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A B S T R A C T

In this paper, a novel optimization model is developed for heavy construction equipment. This approach in-
vestigates a complete range of engine operating points, considering fuel consumption and emission maps to
accurately model fuel efficiency and level of emissions in different working conditions. As a case study, a tracked
bulldozer is investigated on different terrains. The target of the optimization problem is defined as a specific
digging or grading depth with minimum fuel consumption and emissions (unburned hydrocarbons, carbon
monoxide, and nitrogen oxides) based on EU non-road diesel engine emission standard values. Interaction be-
tween the terrain and the bulldozer track is modeled using a semi-empirical method. Dry sand, clayey soil, and
snow terrain are considered. The studied bulldozer is a Caterpillar D8T with 233 kW engine power and 8A type
blade. The design variables are engine speed, transmission gear number, and throttle position. Genetic algo-
rithm, a famous optimization method, is employed. In order to reduce computational costs, integer programming
genetic algorithm is utilized. Due to the complexity of the problem, a constrained nonlinear optimization pro-
blem with combined-objectives is developed. Results show that the general trend of fuel consumption and
emissions rise as the digging depth increases, as expected. However, this study indicates that the bulldozer
traction and digging control can be effectively manipulated by controlling the engine operating point, char-
acterized by engine speed and gear number, to obtain significant improvements in fuel consumption and re-
duction of exhaust emissions. The results also indicate that re-performing the optimizing problem for different
terrain types leads to optimized fuel and emissions targets of up to 77%.

1. Introduction

Environmental aspects of transportation have attracted the atten-
tion of researchers and regulators globally in order to develop energy-
efficient technologies and devise policies aimed at the reduction of
adverse environmental effects [1, 2]. Although the building and con-
struction sector is one of the seven dominant sectors that significantly
contribute toward global greenhouse gas emissions [3, 4], however, the
industry is mainly directed toward energy optimization in buildings and
the sustainability of construction materials to use resources more effi-
ciently [5-7]. Therefore, the environmental impacts of heavy con-
struction vehicles (such as bulldozers, dumper trucks, and excavators)
are used to be neglected in most air pollution studies [8]. However,
heavy off-the-road machinery is in constant use for building and con-
struction works and infrastructure engineering projects, with annual
worldwide sales of 0.6-1 million units [8]. Moreover, recent reports
studying life cycle environmental effects of a building during con-
struction, maintenance, demolition, and recycling phases, have paid

particular attention to heavy construction vehicles and heavy-duty
transport [9-11].

A “bulldozer” consists of a tractor (usually a tracked one) equipped
with a blade. Generally, it is used to push large amounts of soil, sand,
rubble, etc. during construction or conversion work. Bulldozers are
employed on a wide range of building, construction, and mining sites,
massive industry factories, engineering projects, and farms [12, 13].
Determination of the tracked vehicles traction force has been a popular
field of study in terramechanics [14, 15]. Various bulldozer modeling
studies are reported. Multi-body dynamics are used to model various
bulldozer components, as well as the associated joints and contact
surfaces [16]. High fidelity multi-body dynamics analysis can be used to
optimize the design of bulldozers and their subsystems. San [17] em-
ployed finite element method to model a bulldozer multi-body dy-
namics, although, at high computational costs.

The remainder of the manuscript is organized as follows. First, a
review of the background is presented in Section 2, and the problem
statement of the research is described. Then, we present the research
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methodology in Section 3. In Section 3.1, the Caterpillar D8T bulldozer
is introduced, and the powertrain is modeled, in order to analyze fuel
consumption and emission behavior. The complex multi-body dynamics
employed for modeling of the bulldozer [17] are simplified using semi-
empirical models of the vehicle-terrain interaction. The engine model
which takes into account fuel consumption rate and emission behavior
(HC, CO, and NOx) are introduced in Section 3.1. The vehicle-terrain
interaction is modeled using a semi-empirical method proposed by
Bekker [18] in Section 3.2. InSection 3.3, the bulldozer minimum fuel
consumption and emissions program is developed. Finally, the obtained
results are discussed in Section 4, and concluding remarks are presented
in Section 5.

2. Background and problem statement

Various researchers present analyses of electric and hybrid bulldo-
zers. Zhang et al. [19] proposed a model using the subsequent devel-
opment of ADvanced VehIcle SimulatOR (ADVISOR). The model is
employed to analyze the performance during straight movement and
steering conditions. Bulldozer's dynamics model, track walking me-
chanism model, oil pump model, etc. are also developed employing
MATLAB/Simulink. Pan et al. [20] studied the electric drive system of a
tracked hybrid bulldozer. A multi-energy management strategy is em-
ployed, and a method for minimizing the fuel consumption and emis-
sion of a hybrid bulldozer is presented. Wang et al. [21] investigated
the fuel economy of a series hybrid electric tracked bulldozer (HETB)
through the developed model. A model predictive controller (MPC) as
the energy management system is reported.

Lewis and Hajji [22, 23] developed a productivity rate model for a
piece of construction equipment. The productivity rate is defined as the
ratio of the quantity of the work completed to the duration of the
process. Therefore, the productivity rate is inversely related to the
duration of the process. Thus, it is necessary to predict the productivity
rates of construction equipment in order to estimate emissions.
Hajji [24] proposed a model to estimate CO2 emission concerning to the
productivity rate. However, other emissions such as un-burned hydro-
carbons HC, carbon monoxide CO, and nitrogen oxide NOx are not
considered. These emissions are reported by other groups [25, 26]. In
these reports, the amount of emission is quantified through the emission
factor and load factor. The former models the level of emission, while
the later models the average employed rated power used, considering
operation at idle, partial loads, etc. The US Environmental Protection
Agency (EPA) developed the NONROAD model, considering engine
load, fuel-to-emission ratio, and engine size [27]. These studies in-
vestigate specific operating points and usually lack accurate modeling
of the construction equipment (engine), as well as emission maps which
accurately model the level of emission at different engine operating
points and working conditions.

Multi-objective optimization of vehicle traction is proposed by
Robinson et al. [28] for a wheeled vehicle driving in loose dry sand. The
maximum slope climbing efficiency is defined as the primary objective
function during the optimization process. Design variables are ground
and traction parameters such as drawbar pull (DBP), motion resistance
(MR), longitudinal traction coefficient (LTC), and lateral force coeffi-
cient (LFC). The proposed optimization problem has eight design con-
straints: limitation of tire deflections and corresponding DBP coeffi-
cients. The generalized reduced gradient method is employed to find
optimal values of the design variables. The model is based on the Ve-
hicle Terrain Interface (VTI) model proposed by Vahedifard et al. in
Ref. [29]. However, fuel consumption and emissions are not considered
in these studies.

Due to the ever-increasing significance of heavy construction ve-
hicles, in the context of environmental impacts of building and con-
struction projects, in this article, the bulldozer digging (soil pushing)
program is considered, and an optimization problem is developed to
minimize fuel consumption and emission (considering HC, CO, and

NOx). This manuscript focuses on the development of a novel optimi-
zation approach, able to investigate a complete range of construction
equipment engine operating points, and accurately select the working
conditions leading to a minimized function of emission level and fuel
efficiency. As pointed out, those emission items are introduced as the
cost function into the optimization problem. In this case, as CO2 is
closely related to fuel consumption [30-32], only the latter is con-
sidered in order to simplify the problem. Also, throughout the paper,
the “digging depth” is interpreted as the height of the soil accumulated
within the bucket. It should be noted that since the studied terrains are
not limited to soil; therefore, “soil height” or similar phrases are not
used. The optimization design variables are engine speed, engine
throttle position, and transmission gear number. The genetic algorithm
(GA), a popular optimization method [33], is employed to solve the
proposed non-linear constrained problem.

The primary pollutants i.e., hydrocarbon HC, carbon monoxide CO,
and nitrogen oxide NOx, are considered to evaluate the level of emis-
sion during the optimization process [34]. Hydrocarbon emission,
which is formed due to the incomplete combustion of fuel, as well as
fuel evaporation, is toxic and causes short-term or long-term effects,
such as cancer. Carbon monoxide is a colorless, odorless and tasteless
gas which is formed by incomplete combustion of any hydrocarbon gas.
It reacts with human blood hemoglobin and prevents oxygen transfer.
High levels of it cause vision problems and even death. Nitrogen oxide
contributes to the formation of smog, as well as acid deposition. It
damages plants and animals, and ultimately damaging human health.
The reaction between nitrogen oxide and volatile organic compounds
can lead to the formation of ozone which causes severe damage to the
eyes, nose, and respiratory system. It also causes damage to plants,
crops, and forests [35].

In order to show the reliability of the proposed approach, a case
study is presented, including a tracked bulldozer on different terrains,
for which the target of the optimization problem is defined as the
digging depth which results in minimized fuel consumption and emis-
sions. Different terrains, including dry sand, clayey soil, and snow, are
also considered to generalize the method further and show its effec-
tiveness and potentials in solving problems with various input para-
meters. Furthermore, other case studies of the optimization algorithm
may be developed using vehicles with different transmission char-
acteristics and engine curves, the results of which can also lead to the
determination of optimal working point. Finally, the presented opti-
mization approach applies to other heavy construction equipment using
different optimization targets to exploit the optimal working condition
for minimized fuel consumption and emissions. Future experimental
studies may be conducted on machinery in a variety of different test
conditions to prove the reliability of the proposed procedure in practice
further.

In this paper, a new strategy is proposed for improving fuel con-
sumption and emissions of a construction vehicle (bulldozer is in-
vestigated as a case study). In the next stages of future research works,
the modeling may incorporate soil type identification process, as well as
an observer for the blade or bucket load. Combining these features, the
optimum digging program can be employed in practice; the vehicle
identifies the soil type and based on the digging load estimation, the
optimal working program (e.g., gear number, engine rpm, and throttle
position) is selected, which is pre-instructed to the vehicle controller
ROM by an offline optimization process. Therefore, the minimum fuel
consumption and emissions during an excavating round are achieved.
As a custom, the overall work and productivity are the concerns in
excavation contracts. The novel approach of this manuscript is focused
on the aspects of terramechanics in order to determine the effect of
other conditions, such as soil type, track (wheel) geometry, and blade
situations. Moreover, it should be noted that throughout this study, we
employed a fixed value for the digging depth, which is good merit for
comparison between different cases. Also, it can be generalized to any
units of work, for instance, by calculating the volume of the moved soil,
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operation time, costs, etc.

3. Methodology

3.1. Vehicle modeling

The Caterpillar D8T bulldozer is studied in this paper. The main
specifications of the bulldozer are listed in Table 1. Bulldozer D8T is
commonly used in mining applications, and can be used to conduct
future experimental studies; therefore, this type is chosen over other
types of construction machinery, to enable future practical applications.

Experimental specifications for the 3126E Caterpillar engine
(275 hp/205 kW) are available through the ADVISOR software pro-
vided by the National Renewable Energy Laboratory (NREL), U.S.
Department of Energy [37]. The maps for the Caterpillar D8T bulldozer
are scaled to be under the rated engine power. The scaling process
employed in this manuscript is a standard method reported in the lit-
erature [38, 39].

Fig. 1 shows the maps for fuel consumption and emissions of the
Caterpillar D8T. The maps are calculated using ADVISOR's data and the
scaling process. It should be noted that the provided emission/con-
sumption values are only indicative of an order of magnitude, which
essentially means that the comparison among dozer implementation
solutions is not always possible. The thick solid lines represent the
maximum engine torque envelope. Considering the engine brake spe-
cific fuel consumption (BSFC) map, the high efficiency zones are in the
median rpm's, when the engine torque is above 800 N⋅ m. In order for
the engine to operate in the optimal zone, it is preferred to obtain op-
timum values for the bulldozer design variables during the optimization
process within this zone. Using the quasi-static engine map is a standard
method in the literature, and many research works are concentrated on
the validation of this approach [40-42].

The engine-out HC, CO, and NOx emission maps are shown in
Figs. 1. Employment of normalized values has two advantageous: first,
the standard limits which are defined as constraints during the opti-
mization process are stated in the normalized form; second, it is easy to
identify the most efficient zones in each contour plot. As construction
vehicles are equipped with diesel particulate filters (DPF) to remove
soot and other particulate matter (PM) from exhaust gases, PM is not
considered as an emission item in this study. As can be seen, low
emission zones are quite different for the three types of emissions, and

these patterns also differ from the fuel efficiency map. Therefore, the
optimization process results are non-dominant ones. In other words,
improving one objective function may deteriorate other objective
functions from their optimum values. Therefore, a trade-off between the
objective functions, i.e., fuel consumption and engine emissions exist.
Choosing an appropriate optimization technique to solve the proposed
nonlinear problem is essential.

3.2. Vehicle-terrain interaction modeling

In order to study the effect of terrain type on the traction optimi-
zation problem, three different terrain types are studied. The optimi-
zation formulation is defined in the next section. Table 2 lists the terrain
specifications used for the optimization process. The uncertainty ranges
(i.e., confidence intervals) for the terrain specifications (e.g., in terms of
mean + / −STD or shaded area) are used by some research works [26,
43]. In this paper, due to the employment of experimental data from
other references, the uncertainty ranges are not considered.

A semi-empirical method is proposed by Bekker [45] to investigate
motion resistance and traction force of a tracked vehicle. The method
proposed by Bekker assumes that the track has a rigid footing and the
vertical force applied by the terrain to the track is equivalent to the one
beneath a sinkage plate at the same depth in the pressure-sinkage test. If
the longitudinal position of the center of gravity for the vehicle is lo-
cated at the center of the track contact length, the normal pressure
distribution is assumed to be uniform. The Bekker's pressure-sinkage
equation describes the track sinkage z0 by [46]:
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where p is the normal pressure, W is the normal load applied to the
track, b is the width of the track, and l is the track length. Parameters
kϕ, kc, and n are given in Table 2. The motion resistance (Rc) due to the
pressing of the terrain by a track with uniform pressure distribution is
expressed by:
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And the drawbar pull (FDP) is related to the vehicle thrust, F, as:
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For a regular track with constant normal pressure, the drawbar pull-slip
relation is expressed as:
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where i is the track slip (decimal), x is the longitudinal direction, K is
the shear deformation modulus, and A is the track area. The cohesion
(c) and angle of shearing resistance (ϕ) are listed in Table 2, and the
drawbar pull-slip curve for the dry sand is plotted in Fig. 2.

In order to carry out sensitivity analysis, all of the parameters af-
fecting the drawbar pull are increased and decreased by 10%, and the
resultant forces are plotted in Fig. 3. These curves show that a 10%
deviation in the whole parameters of the soil causes a maximum shift by
11% in the drawbar pull.

To investigate the effect of each parameter, the values of the angle
of shearing resistance (ϕ), cohesion (c), shear deformation modulus (K),
and vehicle weight (W) are increased and decreased independently by
10% at a specific slip value (20%) and the resultant thrust forces are
plotted in Fig. 4. The results indicate that two-parameters, i.e. the angle
of shearing resistance and vehicle weight have more effect on the re-
sultant drawbar pull, compared with the other parameters. Moreover,

Table 1
Main specifications of the Caterpillar D8T bulldozer [36].

Suspension type Tracked

Track width (m) 0.610

Track length (m) 3.206

Operating mass (kg) 39420

Blade type 8A

Blade width (m) 5.045

Blade height (m) 1.177

Maximum digging depth (mm) 625

Transmission efficiency (%) 85

Gear 1 (km/h) 3.4

Gear 2 (km/h) 6.1

Gear 3 (km/h) 10.6

Engine power (kW) 233
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as the shear deformation modulus increases, the thrust force decreases,
which is in contrary to the effects of other parameters.

According to Eqs. (2) to (4), the drawbar pull is dependent on the
specifications of the terrain (n, c, ϕ, kc, kϕ, K), and the vehicle (W, b, l).
Moreover, the drawbar pull depends on the track slip (i), which in turn
is a function of engine operating point. Therefore, the bulldozer traction
and digging control can be realized by controlling the engine working
point, which is characterized by the engine speed (rpm) and torque
(throttle position). As a simple relationship between the accelerator
pedal angle and the throttle valve angle (position) exists [47], the
throttle position is considered as the control parameter in this study.

The force acting on a vertical bulldozer blade (FP) with a planar
surface is normal to the direction of forwarding travel, is given as [44]:

Engine CO emission map (g/(kW.h)) Engine NOx emission map (g/(kW.h))

Engine BSFC (g/(kW.h)) Engine HC emission map (g/(kW.h))

Fig. 1. Engine maps of brake specific fuel consumption and engine-out emissions of HC, CO, and NOx.

Table 2
Terrain specifications [44].

Parameter Description Unit Dry sand

n Exponent of sinkage – 1.1

ϕ Angle of shearing resistance (Degrees) 28

c Cohesion (kPa) 1.04

kϕ Friction modulus (kN/mn+2) 1528.43

kc Cohesive modulus (kN/mn+1) 0.99
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Fig. 2. Drawbar pull-slip curves for a tracked vehicle in dry sand.
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Fig. 3. Sensitivity analysis of drawbar pull-slip curves on dry sand.
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were hb is the cutting depth of the blade, bb is the width of the bulldozer
blade, σp is the passive earth pressure, γs is the weight density of the
terrain, and Nϕ is the value of the flow which is given by

+tan (45 /2)o2 . An average value for the working conditions and blade
load is assumed in order to estimate the drawbar pull with reasonable
accuracy in a quasi-static regime.

The relationship between vehicle speed (V) and engine speed (ne) is
described as:

=V n r i(1 )e

0 (6)

where r is the drive sprocket radius and ξ0 is the total transmission
ratio, which is the number of revolutions of the engine crankshaft per
revolution of the track drive sprocket. As shown by Eq. (6), the vehicle
speed is a function of engine speed and track slip. The track slip is a
function of drawbar pull, terrain characteristics, and engine torque.

3.3. Fuel consumption and emission optimization

An overview of the optimization problem is shown in Fig. 5. If the
digging depth of the bulldozer is specified (hdemand), the engine is in-
structed to operate at a specific point in which the fuel consumption
and emissions are minimized.

The most relevant variables that control fuel consumption and
emissions are provided in the flowchart. However, future sensitivity
assessment studies might be conducted to identify the most determinant
variables and to evaluate the significance of theoretical uncertainties on
the obtained results.

The calculation steps are as follows:

• The gross thrust force is determined using engine torque and total
transmission ratio (ξ0).
The engine torque (Me) is assumed as a nonlinear function of the
throttle position (th) and engine speed (ne) ([48], Section 2.6) and is
expressed by Eq. (7), where the transmission system parameters are
not considered.

=M M th n( , )e e e (7)

Throttle position is normalized (between 0% and 100%), where the
maximum engine torque at a specific engine speed, Mmax , is
achieved when the throttle is fully opened (th= 100%) (Fig. 6).
Finally, the thrust force (F) is calculated using:

=F
M

r
e t0

(8)

where ηt is the transmission efficiency, a specification of the bull-
dozer reported in Table 1.

• The track slip (i) is determined using the drawbar pull from Fig. 2. In
order to calculate the drawbar pull (FDP) Eqs. (2), (3), and (8) are
used. Both engine rpm and torque dictates the engine operating
point. These are transferred to the bulldozer track, which is engaged
with the terrain. The tractive force of the vehicle which is generated
by the engine is specified by the track slip (i), using Eq. (4) in an
iterative process. For example, when the engine tries to generate
more tractive force (throttle position increases), the track slip in-
creases as well to provide the excess force.

• The digging depth (hb) is calculated by an iterative method from the
drawbar pull (Eq. (5)). This variable is utilized as a constraint for the
optimization problem.

• The vehicle speed is calculated using Eq. (6).
• In order to solve the proposed optimization problem, genetic algo-

rithm (GA) using MATLAB is employed [49]. The GA method is run
for a reasonable time to ensure the convergence to the solution. In
each iteration of the GA, the calculated solutions are set as the initial
population for the next iteration. Integer programming is selected to
reduce the computational cost while maintaining a reasonable ac-
curacy [50].

3.4. Weighting factors and constraints

The normalization coefficients employed within the target of the
optimization process are calculated using EU non-road diesel engine
emission standard limits. The EU non-road diesel engines, Stage II Cat.
E (2002) standard [51] sets the limitation for the HC, CO, and NOx
pollutants by 1.0, 3.5, and 6.0 g/kWh, respectively. Although EU
emission values reflect the achievements in vehicle emission reduction
technologies and possible regulatory priorities in different emission
items, however, the proposed formulation makes it possible for re-
searchers to focus on any of the emission factors based on the type of
application and their respective prioritizing.

The European emission standard for non-road diesel engines is
employed here for normalization purposes. The normalization coeffi-
cients of fuel consumption and emissions for the optimization problem
are listed in Table 3, which are under the standard limitations values
provided by the standard.

An iterative process is proposed to find the proper weighting factors
assigned to each of the fuel consumption and emission items to be
employed for the optimization formulation, and is a common approach
reported by many research works [52-54]. Corresponding values are
assigned to the weighting factors in the first iteration, and the resultant
fuel consumption and emission items are compared to the regulation
values. In the next iteration, the weighting factors associated with the
target consumption and emission items which are not within the ac-
ceptable range of the non-road standard are updated, until satisfactory
results are obtained.

As an example, four sets of weighting factors are considered in this
study, as shown in Table 3. The first set of weighting factors are con-
sidered to have the same value ( = 0.251

4 each, with the total weighting
factors summation of 1). In order to evaluate the effects of these
weighting factors, the optimization process is performed to study the
bulldozer performance at a given depth of hb= 0.3 m (as a mean depth
value, between 0.1 m to 0.6 m). The obtained results for the first set of
weighting factors (Table 3) indicate that although the NOx quantity
(37.72 g/kWh) is not acceptable within the framework of the EU
emission standard for non-road diesel engines (6 g/kWh), however, the
CO and HC values (1.34 and 0.88 g/kWh) are within the acceptable
range (3.5 and 1.0 g/kWh). Therefore, in the next step, the second set of
weighting factors is defined in order to moderate the high emission
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Fig. 4. Sensitivity analysis of thrust force at 20% slip on dry sand.
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levels of NOx. Considering Iteration 2, the weighting factors for fuelrate,
HC, and CO are decreased compared with the previous iteration, while
the NOx weighting factor is increased to almost six times of the
weighting factor for fuelrate, HC, and CO. The optimization process is
repeated for the same excavation depth, and the obtained results in-
dicate that the NOx value is improved, however, it is still higher than
the standard requirements. Therefore, the third set of weighting factors
is studied to compensate for the high levels of the bulldozer NOx
emissions. The results indicated that the NOx value is further improved,
yet still higher than the standard requirements. At the fourth step, the
NOx weighting factor is increased again. As can be seen, the bulldozer
performance is the same as that for Iteration 3, since the engine is
operating at its best operating point and cannot be further improved.
Further reduction of NOx emission levels to comply with the standard
value may be obtained using exhaust gas after-treatment, including
innovative designs of Diesel Particle Filters (DPF's).

As a basic rule, the preliminary optimization aims to follow reg-
ulatory limits devised on emission items. Therefore, this procedure is
followed in the first iteration to obtain optimized HC, CO, and NOx
emission values. However, as HC and CO values are well below the

defined values, the main problem becomes the minimization of NOx
emissions, by slightly raising fuel consumption and CO emissions, while
keeping HC and CO emissions well below the acceptable EU regulation
limits. As the adverse effects of the increase in CO emissions or fuel
consumption rates are not the main subject of this research, as far as it
remains less than the limit, this point is only mentioned in the text, and
some discussions are made. However, interested readers are referred to
relevant previous research [55] for detailed discussions on this topic
and the correlation between CO emission and an increase in PM values.

It should be noted that the weighting factors are not direct in-
dicators of the relative importance of individual pollutants, based on
the degree of threat posing to public health, environment, etc. The
weighting factors are used to indicate the level of emphasis given to
each polluting item for achieving the assigned objective standard cri-
teria (which may inherently address public health concerns and prio-
rities).

Therefore, the third set of weighting factors is adopted throughout
this article (Table 3, Iteration 3). The procedure described above for
selecting the weighting factors is carried out at a digging depth of 0.3 m
in dry sand; however, it is almost the same for other cases. The com-
bined optimization problem for simultaneous minimization of fuel
consumption and emissions is presented by Eq. (9):

= × ×
+ × × + × ×

+ × ×
=

Target fuel rate n th gn
HC n th gn CO n th gn

NOx n th gn
h h

Minimize: 0.03 1.0 ( , , )
0.03 0.69 ( , , ) 0.03 0.20 ( , , )

0.91 0.11 ( , , )
subject to:

e

e e

e

b demand (9)

As indicated above, the constraint of the proposed optimization
problem is digging depth. The optimization parameters are summarized
in Table 4. As listed, three design variables with the corresponding
bounds are considered.

4. Results and discussion

4.1. Optimization solutions

Solutions of the proposed optimization problem for minimizing fuel
consumption and emissions on dry sand are listed in Table 5.

The objective function of fuel consumption and emissions

Terrain specifications

Exponent of sinkage, 
Angle of shearing 

resistance, 
Cohesion, 

Friction modulus, 
Cohesive modulus,

Shear deformation 
modulus, 

Vehicle specifications

Track Width, 
Track length, 
Track area, 

Normal load applied to 
the track, 

Bulldozer blade width, 
Drawbar pull

( )

Engine working point 

Genetic algorithm

Fig 1
Fig 2
Fig 3
Fig 4

Blade force
( )

Motion resistance
( )

Constraint
Demanded digging 

depth, 

Variable bounds

Terramechanics Model Exerted Forces

Optimization Process

Fig. 5. Flowchart of the optimization problem.

800 1000 1200 1400 1600 1800 2000 2200 2400
Engine RPM

200

400

600

800

1000

1200

E
ng

in
e 

to
rq

ue
 (

N
.m

)

Max. torque (th=1)
th=0.75
th=0.50
th=0.25

Fig. 6. Engine torque in different throttle position and RPM.

M. Masih-Tehrani, et al. Automation in Construction 110 (2020) 103007

6



concerning the digging depth is shown in Fig. 7. As it is shown, the
objective function decreases as the digging depth increases, since the
engine is working at higher efficiency points.

It is worth noting that the objective function resembles the overall
pollution and consumption altogether, with the use of respective
weighting factor for each item. This value is obtained after selecting the
optimum working point of the engine, which can lead to the accom-
plishment of the functional goal defined for the bulldozer. Therefore,
this graph shows an actual decrease in overall emissions (consisting of
the three items of HC, CO, NOx) and fuel consumption, despite one item
(in this case CO) may increase at each of the states. The improvement of
emissions and fuel consumption with depth is due to the general trend
of the engine toward the most efficient working zones, which are visible
in each of the contours of Fig. 1. Moreover, the theoretical digging
depth which minimizes the objective function would be observable
based on the engine map contours. To reduce the number of figures,

variations of the consumption and emission items are presented in
Table 5, and the values of the overall objective function are plotted in
Fig. 7.

The obtained design variables, i.e., engine control variables, for the
proposed optimization problem are listed in Table 6. The results show
that:

• The optimal range of engine speed is between 1800 and 2400 rpm.
• The third gear leads to the best fuel consumption and emissions,

compared with other gear numbers.
• The throttle position increases as the demanded digging depth in-

creases.

The obtained results for the design variables may be employed to
develop an optimal control. It is worth mentioning that the actual speed
of the machine can be calculated using Eq. (6). However, time and
velocity are significant for construction vehicle performance optimi-
zation. In this paper, the performance is calculated for “energy” units
(kWh), not based on the “power” units (kW). This approach inherently
directs the problem to find the optimum solution in the vehicle's highest
possible (optimum) speed range. However, imposing a strict exact time
restriction or a minimum speed limitation would probably force the
engine out of the current optimum working point, toward a sub-optimal
point satisfying the time or speed constraints. This adversely affects the
optimization results in terms of air pollution and fuel consumption,
although providing an acceptable amount of improvement compared
with the conditions of operation in non-optimal engine working points.

4.2. Terrain type effect

Finally, to illustrate the effectiveness of the proposed method for
different terrain types, the digging programs are investigated for two
new terrains; clayey soil and snow, the specifications of which are listed
in Table 7.

The drawbar pull-slip curve for the dry sand is shown in Fig. 8.
Table 8 shows the results of the optimum digging program for clayey
soil. For each digging depth target, two rows are presented in this table;
one row shows the performance of the bulldozer when using the op-
erating conditions obtained during the optimization process for dry
sand terrain and another row when using the working conditions ob-
tained after performing re-optimization considering the clayey soil

Table 3
Different sets of weighting factors for fuel consumption and emissions and the corresponding bulldozer performances (at hb= 0.3 m), along with the European
emission standards for non-road diesel engines.

Fuel rate HC CO NOx

EU non-road diesel engines, Stage II Cat. E (2002) (g/kWh) – 1.0 3.5 6.0

Normalized coefficients 1 0.69 0.20 0.11

Iteration 1 Weighting factors 1
4

= 0.25 1
4

= 0.25 1
4

= 0.25 1
4

= 0.25

Obtained values (g/kWh) 246.21 0.88 1.34 37.72

Iteration 2 Weighting factors 1
9

= 0.11 1
9

= 0.11 1
9

= 0.11 6
9

= 0.67

Obtained values (g/kWh) 251.38 0.62 1.23 28.36

Iteration 3 Weighting factors 1
33

= 0.03 1
33

= 0.03 1
33

= 0.03 30
33

= 0.91

Obtained values (g/kWh) 264.57 0.66 2.44 15.04

Iteration 4 Weighting factors 1
93

= 0.01 1
93

= 0.01 1
93

= 0.01 90
93

= 0.97

Obtained values (g/kWh) 264.57 0.66 2.44 15.04

Table 4
Minimized fuel consumption and emissions optimization parameters.

Cost function Minimized fuel consumption and emissions
Design variables ne: engine speed

gn: transmission gear number
th: throttle position

Variable bounds 700 rpm ≤ ne ≤ 2400 rpm
1 ≤ gn ≤ 3
0% ≤ th ≤ 100%

Table 5
Solutions of the proposed optimization problem.

Digging depth (m) Fuel rate (g/
kWh)

HC (g/
kWh)

CO(g/
kWh)

NOx (g/kWh)

0.1 326 2.09 0.00 36.60

0.2 295 1.10 2.07 23.83

0.3 265 0.66 2.44 15.04

0.4 243 0.46 1.62 9.84

0.5 225 0.31 0.80 9.33

0.6 212 0.26 0.89 8.15
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conditions. The results show that the errors of the demanded and the
actual digging depths for the cases where working conditions are op-
timized for the previous terrain type (dry sand) and the new soil (clayey
soil) are up to 15%. This outcome shows the necessity of resolving the
optimization problem for each terrain type. Besides, fuel consumption
and emission targets are improved up to 6% for the re-optimized cases.

The drawbar pull-slip curve for snow is shown in Fig. 9. Table 9
shows the results of the optimum digging program for the snow terrain.
The results show that the errors of the demanded and the actual digging
depths are very high (100% in some cases) when the optimization
problem is not resolved for the new soil type (snow). After resolving the
digging problem considering the snow soil, not only fuel efficiency and
emissions are improved, but also it facilitates the provision of the

demanded digging depth. The results indicate that if the digging pro-
blem is not resolved for the new terrain type (and the optimum working
parameters of dry sand are used for snow), the bulldozer could not
reach the demanded digging depth in most cases. Besides, for the re-
optimized cases, fuel efficiency and emissions targets are improved by
up to 77%, which are more than the improvement values obtained for
the clayey soil terrain.

5. Conclusion

A novel optimization model is developed for heavy tracked con-
struction equipment which can be used for optimizing the vehicle
performance in terms of fuel consumption and emissions (HC, CO, and
NOx). The proposed model considers a complete range of engine op-
erating points, taking into account fuel consumption and emission maps
to accurately model the level of emission and fuel efficiency for dif-
ferent working conditions. For expanding the proposed approach to
other construction vehicles, some modifications are needed. For ex-
ample, the terramechanics equations for the tracked and wheeled ve-
hicles are not the same. Moreover, the forces acting upon the blade are
different for different machines. Therefore, for expanding this approach
to other vehicle types, some changes should be applied. However, the
core of the proposed method in this article is maintained without the
need for major modifications. In this article, the productivity is ignored
to concentrate on fuel consumption and emissions reduction, because of
the simplicity. If more objective functions are augmented to the opti-
mization problem, the solution method might even deviate from the
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Fig. 7. Fuel consumption and emissions concerning the digging depth (Eq. (9)).

Table 6
Solutions of the engine control variables for the proposed optimization pro-
blem.

Digging depth
(m)

Engine speed ne
(rpm)

Transmission gear
number

Throttle position
gn th (%)

0.1 2372 3 18

0.2 2385 3 26

0.3 2374 3 37

0.4 2385 3 52

0.5 2120 3 60

0.6 1860 3 73

Table 7
Clayey soil and snow terrain specifications [14, 46].

Parameter Unit Clayey soil Snow

n – 0.5 0.6

ϕ (Degrees) 13.0 19.7

c (kPa) 4.14 1.03

kϕ (kN/mn+2) 692 197

kc (kN/mn+1) 13.19 4.37
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Fig. 8. Drawbar pull-slip curves for a tracked vehicle in clayey soil.
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primary goal. On the other hand, several studies are reported in the
literature focusing on machine productivity; however, what is less
discussed is an investigation of the fuel consumption and emissions at
different machine working conditions, as an essential gap in the lit-
erature.

As a case study, a 40-ton tracked bulldozer on dry sandy soil is
modeled. Fuel consumption and emission maps of the bulldozer engine
are utilized. In the proposed optimization problem, a certain digging
depth is specified, and minimum fuel consumption and emissions are
targeted. In order to develop the corresponding combined optimization
problem, normalization coefficients are obtained according to the EU
non-road diesel engine standard targets, and weighting factors are as-
signed to each of the target items. An iterative process is proposed to
find the proper weighting factors.

Results of the proposed problem show that:

• As the digging depth increases, the combined fuel consumption and
emission target decreases, since the engine is operating at more ef-
ficient operating points.

• The proposed approach inherently directs the problem to find the
optimum solution in the vehicle's highest possible (optimum) speed
range, i.e., engine speeds are higher than 1700 rpm and the op-
timum gear numbers are 3.

• Imposing a strict exact time restriction or a minimum speed lim-
itation would probably force the engine out of the current optimum
working point, toward a sub-optimal point satisfying the time or
speed constraints.

• The throttle position increases as the demanded digging depth in-
creases.

In order to illustrate the effectiveness of the proposed method for
different terrain types, the digging programs are investigated for two
new terrains; clayey soil and snow. The results show that the optimi-
zation problem should be carried out distinctly for each terrain type for
two reasons: satisfying the digging demand and optimizing fuel effi-
ciency and emissions targets. The presented results indicate that this
leads to an improvement of up to 77% in fuel efficiency and emissions
targets. On the other hand, without repeating the optimization con-
sidering the terrain specifications, the error of the digging depth may
increase to relatively high values, and the bulldozer may not even be
able to reach the specified digging depth using the pre-specified engine
operating point.

The bulldozer digging optimization model presented in this paper
may be used for steady-state maneuvers as well. Also, the results may
be stored in look-up tables to be employed for dynamic and optimal
control problems in real-time. If the terrain specifications are unknown,
an identification algorithm can be used to develop an on-line optimi-
zation problem, concerning the terrain specifications.

The proposed methodology can be used for fuel consumption

Table 8
Results of the optimum digging program for clayey soil.

Demanded digging depth
(m)

Optimization program
conditions

Engine speed ne
(rpm)

Gear number gn Throttle position
th

Actual digging depth
(m) (error %)

Fuel & emissions target (g/kWh)
(improv. %)

0.10 Opt. for dry sand 2372 3 18 0.10 (0%) 13.59
ReOpt. for clayey soil 2337 3 18 0.10 13.56 (0%)

0.20 Opt. for dry sand 2385 3 26 0.17 (15%) 11.37
ReOpt. for clayey soil 2355 3 29 0.20 10.70 (6%)

0.30 Opt. for dry sand 2374 3 37 0.26 (13%) 9.55
ReOpt. for clayey soil 2366 3 42 0.30 9.02 (6%)

0.40 Opt. for dry sand 2385 3 52 0.37 (8%) 8.38
ReOpt. for clayey soil 2292 3 54 0.40 8.13 (3%)

0.50 Opt. for dry sand 2120 3 60 0.48 (4%) 7.75
ReOpt. for clayey soil 2124 3 64 0.50 7.64 (1%)

0.60 Opt. for dry sand 1860 3 73 0.59 (2%) 7.26
ReOpt. for clayey soil 1769 3 73 0.60 7.28 (0%)
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Fig. 9. Drawbar pull-slip curves for a tracked vehicle in snow.

Table 9
Results of the optimum digging program for snow.

Demanded digging depth
(m)

Optimization program
conditions

Engine speed ne
(rpm)

Gear number gn Throttle position
th

Actual digging depth
(m) (error %)

Fuel & emissions target (g/kWh)
(improv. %)

0.10 Opt. for dry sand 2372 3 18 0.00 (100%) 13.59
ReOpt. for snow 2120 3 63 0.10 7.66 (77%)

0.20 Opt. for dry sand 2385 3 26 0.00 (100%) 11.37
ReOpt. for snow 2113 3 68 0.20 7.54 (51%)

0.30 Opt. for dry sand 2374 3 37 0.00 (100%) 9.55
ReOpt. for snow 1971 3 72 0.31 7.35 (30%)

0.40 Opt. for dry sand 2385 3 52 0.00 (100%) 8.38
ReOpt. for snow 2389 3 99 0.40 7.39 (13%)

0.50 Opt. for dry sand 2120 3 60 0.00 (100%) 7.75
ReOpt. for snow 2159 3 98 0.50 7.13 (9%)

0.60 Opt. for dry sand 1860 3 73 0.34 (43%) 7.26
ReOpt. for snow 1736 3 100 0.60 6.93 (5%)
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optimization and emissions reduction in other commercial and off-road
vehicles, chiefly agricultural and construction vehicles, the perfor-
mances of which are governed by their interaction with the terrain. In
this paper, a case study of tracked bulldozer is considered. However, the
same methodology can be applied to pneumatic-tire heavy construction
vehicles.
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