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A B S T R A C T

Accurate estimation of the State of Power (SoP) can ensure safe and efficient operation of Lithium-ion batteries
in Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs). The cell-to-cell variation within a battery pack is
a major challenge towards accurate estimation of the SoP, particularly when the cells get aged. This paper
presents a hybrid model predictive and fuzzy logic based control system to accurately estimate the SoP for series-
connected Lithium-ion cells. The estimation strategy consists of two steps; the power capability for a single new
cell is first reckoned under the light of the model predictive control algorithm. The second step is devoted to
designation of a model-less fuzzy logic based control system to compensate for the concurrent aging state and
State of Charge (SoC) differences among the cells. Accordingly, the present approach only utilizes the actual
values of current and cell voltages together with the Electric Circuit Model (ECM) parameters of the new cell,
which are identified off-line. Moreover, it benefits from a closed-loop framework which ends in an accurate and
reliable SoP estimation. An experimental setup consisting of fresh and aged LiFePO4 cell samples is designed and
the extracted data are utilized to verify the proposed estimation method in a feed-forward simulation model for a
HEV. The results indicate that the proposed method can estimate the pack SoP accurately while the safe op-
eration for the cells is guaranteed.

1. Introduction

Today, the Lithium-Ion Batteries (LIBs) are increasingly used as the
energy storage system in Electric Vehicles (EVs) and Hybrid Electric
Vehicles (HEVs) [1–3]. The LIBs are very sensitive to the operational
and environmental conditions such that their life cycle will be greatly
reduced due to abuse [4–6]. The guaranteed safe operation of the
battery in electric vehicles is achieved using the Battery Management
System (BMS) which is responsible for monitoring and protection of the
battery against misuse [7–9]. One of the most important tasks of the
BMS is to estimate the battery maximum available power, also called
the State of Power (SoP). The battery SoP is defined as the maximum
power which can be drawn from or received by the battery for some
future seconds such that its Safe Operating Area (SOA) is not violated.
This battery state is used in the Vehicle Control Unit (VCU) to enhance
the performance while maintaining the safe operation of batteries in
electric vehicles [10–12]. Battery power capability is limited by the

allowable ranges of current, voltage, temperature and SoC which ap-
prove the safe operation of the battery. However, for a short prediction
horizon (less than 10 s) mostly the current and voltage act as the lim-
iting factors of the battery power capability and the temperature and
SoC play a secondary role due the their slow changes.

Among the available techniques for estimation of battery SoP,
methods based on battery Electric Circuit Model (ECM) are the most
promising approaches due to consideration of battery dynamic beha-
vior [13–15]. The existing researches for SoP estimation mainly differ
in the applied ECM for the battery. It is clear that more precise ECMs
paves the way through more accurate SoP estimations [14,16,17]. Si-
mulating the electrochemical phenomena inside the battery, various
ECMs and corresponding SoP estimations have been presented. This
includes considering the polarization effect [18] and the dependence of
polarization resistance to battery SoC [19,20], current [21–23], or both
[24]. The change of battery ECM parameters as a result of aging is also
an important issue which should be taken into account in the SoP
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estimation. The parameters of the model should be updated on-line in
order to adapt the estimation with various aging levels [25–27]. A new
method for compensating the noise effect in SoP estimation is also
proposed by Wei et al. in which the model is identified online using a
so-called AF-RTLS1 method [28].

Recently, the predictive control methods have been shown to be
appealing for battery control problem [29–31]. In this regard, Xavier
et al. applied the Model Predictive Control (MPC) algorithm to the
problem of fast charging of LIB [32,33]. They used a modified form of
the MPC algorithm to compute a fast charging profile respecting the
operating constraints of the battery. Also, Liu et al. used the constrained
Generalized Predictive Control (GPC) algorithm for the fast charge
problem where the ECM is coupled with the thermal model of the
battery [34]. In all of the above mentioned research, the battery SoP is
estimated for a single cell. However, the battery system in electric ve-
hicles consists of tens to hundreds of cells which are connected in series.
Due to manufacturing tolerances and various operating conditions, the
cells do not have the same dynamic behavior and this cell-to-cell var-
iation will also be intensified as the battery getting aged [35]. This
leads to different states of power for the cells which limit the power
capability of the battery pack. A straightforward solution for SoP esti-
mation of a battery pack is to estimate the SoP for each individual cell.
Therefore, the ECM parameters for each individual cell should be es-
timated on-line. This way, the cell with the lowest magnitude of SoP
limits the power capability of the pack. Considering the large number of
series-connected cells in electric vehicle applications, this solution re-
quires a high computing power.

Among many existing researches, few studies have focused on the
SoP estimation for a battery pack considering cell-to-cell variation. Jin
et al. proposed to use only the pack resistance, minimum/maximum
values of the open circuit voltage for the cells and maximum resistance
of the cells for estimating the pack SoP [36]. However, the estimation is
performed conservatively for the worst case in which n folds of the SoP

for an assumed cell with the maximum resistance and maximum or
minimum open circuit voltage (depending whether the charge or the
discharge power is estimated) is considered as the SoP of the pack,
where n denotes the number of cells connected in series. Moreover, the
effect of various aging states for the cells has not been taken into ac-
count for pack SoP estimation. Also, Dong et al. considered the differ-
ences in SoCs of the cells for battery pack SoP estimation in which an
EKF-based method is used for estimating SoCs of the cells [37]. As a
main drawback, they did not consider the change in SoP as the battery
getting aged.

Waag et al. proposed a method for estimation of a LIB pack available
power in which the weakest cell candidates are chosen according to the
open circuit voltage and internal resistance values of the cells [23]. The
estimated average cell parameters are then used to calculate the battery
pack SoP. However, the dynamic of all the cells in the pack is assumed
to be the same which is not necessarily correct in reality. Also, variation
of the aging states for each individual cell has been considered using a
simplified relation between the change in cell voltage and the change in
pack average voltage. Jiang et al. proposed a novel ECM parameter
estimation method and combined it with the mean cell model to esti-
mate battery pack SoP [38]. Due to on-line estimation of ECM para-
meters for all the cells, the proposed method is adaptive to various
aging states. But, the cell-to-cell variation caused by different SoCs of
the cells and their effect on the pack SoP estimation are neglected. Also,
a verification test to show the accuracy of battery pack SoP estimation
is ignored.

In fact, the SoP variations among the cells are mainly caused by
different SoCs and aging states of the cells and therefore, it seems ne-
cessary to consider both in order to obtain accurate estimations of the
SoP for the battery pack. This has been remained as a major challenge
towards accurate estimation of battery pack power capability. This is
due to the fact that on-line estimation of ECM parameters for the cells
considering the effect of both SoC and aging state variations not only
increases the complexity and computational cost of battery SoP esti-
mation, but also requires adequate lab and field validations to prove the
accuracy and convergence of the on-line estimation algorithms [35,39].

Nomenclature

EV Electric vehicle
HEV Hybrid electric vehicle
SoP State of power
SoC State of charge
SoH State of health
ECM Electric circuit model
LIB Lithium-ion battery
BMS Battery management system
VCU Vehicle control unit
GPC Generalized predictive control
MPC Model predictive control
CAN Controller area network
DC Direct current
USB Universal serial bus
PC Personal computer
QP Quadratic programming
SOA Safe operating area
FLBC Fuzzy logic based controller
RE Relative error
is

dis Secondary current limit at discharge
is

chg Secondary current limit at charge
vs

dis Secondary voltage limit at discharge
vs

chg Secondary voltage limit at charge
Ke Input scaling factor
Ku Output scaling factor

Voc Open circuit voltage
Ri Series resistance
Cdl Double-layer capacitance
Rct Charge transfer resistance
ΔT Prediction time window
Vc RC branch voltage
Vt Terminal voltage
k Discrete time
Ts Discretization sampling time
z, Z Normalized SoC, element and vector
Q Capacity
η Coulombic efficiency
i, I Current, element and vector
u,U Input variable, element and vector
Y, Yref Output and reference output vectors
Δu, ΔU Input variable change, element and vector
Δi, ΔI Current change, element and vector
Np Prediction horizon
Nc Control horizon
imin Allowable charge current
imax Allowable discharge current
vmin Cell voltage lower limit
vmax Cell voltage upper limit
γ Weighting factor
Ns Number of series connected cells

1 Adaptive Forgetting Recursive Total Least Squares

M.J. Esfandyari, et al. Journal of Energy Storage 24 (2019) 100758

2



In this paper, a SoP estimation method for series-connected Lithium-
ion cells is presented in which the SoC and aging state variations of the
cells are taken into account simultaneously. First, the MPC algorithm is
applied to accurately predict the power capability of a new cell. In this
regard, the cell-based SoP estimations are compared with those pre-
sented by Sun et al. [27] and the results demonstrate that using MPC
algorithm, the accuracy of SoP estimation is improved. In the second
step, a model-less fuzzy logic based control system is designed to
compensate for the cell-to-cell variation through a closed-loop inter-
action with the VCU. The closed-loop framework of the present tech-
nique paves the way through accurate and reliable SoP estimation for
series-connected cells. In order to verify the pack-level estimations, the
extracted data from an experimental setup for sample new and aged
LiFePO4 cells are utilized in a feed-forward simulation model for a
series HEV. The driving cycle results indicate promising SoP estimations
along with guaranteed safe operation for the battery pack.

Three major contributions of the paper are highlighted as follows:
(1) Different dynamic behaviors of all the cells caused by various SoCs
and aging states are taken into account for accurate estimation of the
pack SoP; (2) Unlike the aforementioned researches which require on-
line estimation of the ECM parameters for the cells, in the proposed
method, no a priori aging state estimation of the cells is required and
only the ECM parameters of the new cell are utilized which are iden-
tified off-line. Also, the SoP estimations are robust to inaccuracies in
SoC values. (3) As a common method, the power capability is estimated
assuming a constant-current reference case which leads to the cell
voltage reaching its allowable limit at the end of the prediction time
window. In the present study, this traditional estimation method is
replaced by the well-known MPC algorithm which ends in more accu-
rate SoP estimates, as verified by the results. Rest of the paper is or-
ganized as follows. In Section 2, the ECM for the cell is developed using
an experimental setup. Then, the SoP estimation for the new cell based
on the MPC algorithm is presented in Section 3. Considering the cell-to-
cell variation, SoP estimation for a battery pack is addressed in Section
4. Finally, the verification results are presented in Section 5.

2. Battery model

As a preliminary step for SoP estimation of series-connected cells, an
ECM for the cell is developed using an experimental setup where the
details are explained in the following sections.

2.1. Equivalent circuit model structure

Components of the ECM of the battery, as presented in Fig. 1, consist
of the open circuit voltage (Voc), internal resistance (Ri) and one RC
circuit which contains the double-layer capacitance (Cdl) and charge
transfer resistance (Rct). The dynamic equation for this model in dis-
crete time is given by Eq. (1) [40,41].

V k V k e R e i k

V k V k R i k V k

( 1) ( ) (1 ) ( 1)

( 1) ( 1) ( 1) ( 1)

c c
T

R C ct
T

R C

t oc i c

ct dl ct dl+ = + +

+ = + + + (1)

where k indicates the sampling time, ΔT is the sampling interval, Vc is
the RC circuit voltage, Vt is the terminal voltage and i is the battery
current. To obtain the ECM parameters, experimental tests have been
carried out which are described in the following section.

2.2. Battery experiments

The battery impedance parameters, the open circuit voltage and
capacity for LiFePO4 cell sample are obtained using an experimental
setup. The major components of test bench, as illustrated in Fig. 2,
consist of AVL DC power supply, LiFePO4 cell, BMS, thermal chamber,
CAN to USB interface, and host computer for data monitoring and

command to the power supply. The AVL DC power supply can be used
for charging and discharging of the batteries for currents up to± 300 A.
The cell voltages are read by the BMS with errors less than 0.1% (i.e.
5 mV in 0–5 volts range). Also, a shunt resistor of 12 mΩ is used for
battery current measurement which gives errors less than 2%. The cell
voltages and current values are sent to a high speed CAN bus by the
BMS. In the host PC, a data monitoring and storage software is designed
in LabVIEW environment which receives the CAN bus data using CA-
Nusb interface from Softing company [42]. The battery cell used in this
research is LiFePO4 cell with nominal capacity of 10 Ah and nominal
voltage of 3.2 V.

In order to obtain capacity of the cell sample, the following test
procedure is used [7,40]:

Charging with constant current rate of 0.5C until the battery
terminal voltage reaches its maximum value of 3.65 V.

• The voltage is remained constant at 3.65 V until the current drops
below 0.02C.
• After a rest period of 20min, the battery is discharged with the
constant current rate of 0.5C until the cut-off voltage of 2 V is
reached.
• The total Ampere-hour passed from the battery during the discharge
cycle indicates the battery capacity.

Following the above procedure, the new cell capacity is obtained to
be 10.58 Ah. The identification of the battery ECM parameters is per-
formed off-line using current pulses at different SoCs for each of the
charge and discharge cases [43,44]. In this regard, starting from the
fully charged state, the battery is discharged for 12min with a current
pulse of 0.5C rate. After a consequent rest of 20min, the procedure is
repeated for ten times. The same test procedure is performed for the
charge case after the end of the discharge test, i.e. the battery is charged
with ten sequences of charge pulses with subsequent rests. Fig. 3 shows
the terminal voltage response of the cell during the discharge and
charge pulse tests. As shown in a magnified view in Fig. 3, the rapid
change in the terminal voltage between points A and B indicates the
effect of the series resistance on the response (i.e. Rii). Also, the gradual
change of the terminal voltage reflects the charge-transfer phenomena
and the response can be used for obtaining the charge-transfer re-
sistance Rct and double-layer capacitance Cdl. To do so, from Eq. (1) the
battery terminal voltage between point B and point C can be written in
the form given by Eq. (2).

V k V c e k N( ) (1 ); 0t B
c kT

1 s2= + (2)

where Ts is the data sampling time and N indicates the total data
samples during the interval [tB-tC]. Using MATLAB identification
toolbox, values of c1 and c2 are identified for each pulse response. Ac-
cordingly, the ECM parameters are obtained using Eq. (3). The corre-
sponding values of Voc, Ri, Rct and Cdl for the new cell at 25 °C are
presented in Fig. 4.

Fig. 1. Equivalent circuit model of the battery.

M.J. Esfandyari, et al. Journal of Energy Storage 24 (2019) 100758

3



R V V
i

R c
i

C
c R

, , 1
i

B A
ct dl

ct

1

2
= = =

(3)

3. MPC-based SoP estimation for the new cell

To obtain the SoP for series-connected cells, firstly the estimation is
performed for a new cell based on the MPC algorithm. MPC relates to a
class of control strategies that make use of predicted response of the
system to optimize its future behavior while respecting the operating
constraints. At each sample time, an optimal control sequence is cal-
culated taking into account the future references of the controlled
system where only the first control input is applied to the system
[45,46]. In order to implement the MPC algorithm for estimation of
battery SoP, the battery ECM should be transformed to a state space
form which is compatible with the standard MPC algorithm. Then, an
appropriate cost function reflecting the control objective should be
defined and an on-line optimization problem considering the operating
constraints on the inputs and outputs should be solved. The following
sections provide the details for each of the aforementioned steps. The
derived equations in this section are similar to what presented by Xa-
vier et al. [32,33,47] for cell-level control of LIBs.

3.1. Battery state space representation

The ratio between the residual capacity and the total capacity of the

battery indicates the SoC for the battery. Therefore, the SoC in discrete
time can be represented by Eq. (4).

z k z k t
Q

i k( 1) ( ) ( )+ =
(4)

where z(k) indicates the battery SoC (normalized to the interval [0,1])
at time sample k, η is the coulombic efficiency, ΔT is the time step, Q is
the battery total capacity and i(k) is the battery current which is as-
sumed to be positive during the discharge. Considering the definition of
battery SoC, the discrete time ECM model described by Eq. (1) can be
written in state space form as given by Eqs. (5) and (6).

x k Ax k Bu k
y k Cx k Du k

( 1) ( ) ( )
( ) ( ) ( )
+ = +

= + (5)
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T
Q
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1 0

0
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( )
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c
T

R C c
ct

T
R C

t oc
c

i

ct dl
ct dl

+
+

= +

= +
(6)

In order to be compatible with the standard MPC formulation, the
state space Eq. (5) should be written in the form given by Eq. (7) in
which the direct feedthrough D-term is assumed to be zero and the
system input is Δu rather than u.

x k Ax k B u k
y k Cx k

( 1) ( ) ( )
( ) ( )

+ = +
= (7)

Defining a new state vector as x x u˜ [ ]T T T= , the state space Eq. (6)
can be reformulated so that the feedthrough D-term is incorporated and
the augmented model has an embedded integrator as represented by Eq.
(8) [32,48].

x k
u k

A B
I

x k
u k I u k

y k C D
x k
u k

( 1)
( 1) 0

( )
( )

0 ( )

˜ ( ) [ ] ( )
( )

x k A x k B

C
x k

˜ ( 1) ˜ ˜ ( )
˜

˜
˜ ( )

+
+

= +

=

+

(8)

where u k u k u k( ) ( 1) ( )= + . Therefore, the state space Eq. (6) can
be written in the following form:

Fig. 2. The experimental setup.

Fig. 3. Pulse test results for the new cell.
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The modified state space representation given by Eq. (9) can be used
as the input model for MPC algorithm.

3.2. Definition of the cost function

Typically, the objective function in MPC consists of the quadratic
forms of the tracking error and the control input as given below:

J Y k Y k U k|| ( 1) ( 1) || || ( ) ||ref Q R
2 2= + + + (10)

In Eq. (10), Y k( 1)ref + denotes array of the reference outputs and
the notation x R represents the weighted 2-norm. Also,
Y k y k k y k k y k N k( 1) [ ˜ ( 1| ) ˜ ( 2| ) ˜ ( | )]p

T+ = + + + and U
k u k k u k k u k N k( ) [ ( | ) ( 1| ) ( 1| )]c

T= + + denote the output
and input increment vectors, respectively. For estimation of battery
SoP, the objective function can be defined as follows:

J Z k Z k I k|| ( 1) ( 1) || || ( ) ||ref Q R
2 2= + + + (11)

where Z k( 1)+ represents the predicted cell SoCs along the prediction
horizon Np and I k( ) contains the battery current increments along the
control horizon Nc. The output reference can be SoC of 100% for the
charge case and 0% for the discharge case. Therefore, the control ob-
jective is to find the battery applied current sequence which drives the
SoC to its reference value while ensuring the SOA for battery current
and the terminal voltage.

3.3. Solution of the constrained optimization problem

Assuming Q INp= and R INc= in Eq. (11), the online optimization
problem is as follows:

J Z k Z k Z k Z k

I k I k

min ( ( 1) ( 1)) ( ( 1) ( 1))

( ( )) ( ( ))
I k

ref
T

ref

T

( )
= + + + +

+ (12)

subject to:

x k Ax k B i k
y k C x k z k C
i i k i
v V k v

˜ ( 1) ˜ ˜ ( ) ˜ ( )
˜ ( ) ˜ ˜ ( ) ( ); ˜ [1 0 0]

( )
( )

z z z

t

min max

min max

+ = +
= = =

(13)

where vmin, vmax are the minimum and maximum allowable cell vol-
tages and imin, imax are the allowable charge and discharge currents,
respectively. Note that the output y k˜ ( )z equals the first element of the
state vector. In order to solve the above on-line optimization problem,
we try to describe Eqs. (12) and (13) consistent with the well-known
Quadratic Programming (QP) problem formulations which are of the

Fig. 4. ECM parameters for the new cell at 25 °C, (a) Ri, (b) Rct, (c) Cdl, (d) Voc.
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form described by Eq. (14).

J U G U f U s t A U b1
2

; . .T T= + (14)

The elements of the output vector Z k( 1)+ can be calculated se-
quentially:

z k C x k C Ax k B i k C Ax k C B i k
z k C x k C Ax k B i k

C Ax k C B i k
C A x k C AB i k C B i k

z k N C A x k C A B i k j

( 1) ˜ ˜ ( 1) ˜ ( ˜ ˜ ( ) ˜ ( )) ˜ ˜ ˜ ( ) ˜ ˜ ( )
( 2) ˜ ˜ ( 2) ˜ ( ˜ ˜ ( 1) ˜ ( 1))

˜ ˜ ˜ ( 1) ˜ ˜ ( 1)
˜ ˜ ˜ ( ) ˜ ˜ ˜ ( ) ˜ ˜ ( 1)

( ) ˜ ˜ ˜ ( ) ˜ ˜ ˜ ( 1)

z z z z

z z

z z

z z z

p z
N

j

N

z
N j

2

1

p
c

p

+ = + = + = +
+ = + = + + +

= + + +
= + + +

+ = + +
=

(15)

Eq. (15) can be written in the matrix form given by Eq. (16).

z k
z k

z k N

C A
C A

C A

x k

C B
C AB C B

C A B C A B C A B

I k

( 1)
( 2)

( )

˜ ˜
˜ ˜

˜ ˜

˜ ( )

˜ ˜ 0 0
˜ ˜ ˜ ˜ ˜ 0

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

( )
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z

z z
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z
Np

z
Np Nc

Hz( 1)

2

1 2

+
+

+

= +

+

(16)

Using Eq. (16), the objective function of Eq. (12) can be expanded as
follows:

J Px k H I k Z k Px k H I k Z k

I k I k
H I k Px k Z k H I k H I k

I k I k Const
I k H Px k Z k I k H H I I k

Const
H Px k Z k I k

I k H H I I k Const

I k G I k f I k Const

( ˜ ( ) ( ) ( 1)) ( ˜ ( ) ( ) ( 1))

( ( )) ( ( ))
2( ( )) ( ˜ ( ) ( 1)) ( ( )) ( )

( ( )) ( ( )) .
2( ( )) ( ˜ ( ) ( 1)) ( ( )) ( )( ( ))

.
(2 ( ˜ ( ) ( 1))) ( ( ))

1
2

( ( )) (2 2 ) ( ( )) .

1
2

( ( )) ( ( )) ( ) .
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T

ref

T

T
ref

T

T

T T
ref

T T

T
ref

f

T

T T

G

T T

= + + + +

+
= + +

+ +
= + + +

+
= +

+ + +

= + +

(17)

Therefore, the objective function is written in the form of QP pro-
blem. However, the constraints on battery current and terminal voltage
should also be imposed as functions of ΔU. For battery current con-
straints we have:

i i k j i j N( ) ; 1, 2, ..., cmin max+ = (18)

In terms of current increments we have:

i k i k i k
i k i k i k i k

i k N i k j i k

( 1) ( ) ( )
( 2) ( ) ( 1) ( )

( ) ( ) ( )c
j

N

0

1c

+ = +
+ = + + +

+ = + +
= (19)

In the matrix form, Eq. (19) can be written as below:

i k
i k

i k N

i k
i k

i k N

i k
i k

i k

( 1)
( 2)

( )

1 0 0
1 1 0

1 1 1

( )
( 1)

( 1)

( )
( )

( )c

I k D
c

I k i k( 1) ( ) ˜ ( )

+
+

+

= +

+

+

+ (20)

Therefore, Eq. (20) can be reformulated as below:

D
D I k i i k

i i k
( )

˜ ˜ ( )
(˜ ˜ ( ))
max

min (21)

where ĩmax and ĩmin
NcR are vectors built from the elements imin and

imax, respectively. For the terminal voltage constraints we have:

v V k j v j N( ) ; 1, 2, ...,t pmin max+ = (22)

In order to write the above inequality as function of current incre-
ments, we go back to Eq. (9). Following the same procedure as pre-
sented for obtaining Z(k+1) in Eqs. (15) and (16), we can write:
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Therefore, Eq. (22) can be represented as function of current in-
crements as below:

H
H I k v v z k P x k

v v z k P x k
( )

˜ ˜ ( ( )) ˜ ( )
(˜ ˜ ( ( )) ˜ ( ))
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v

oc v
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min (24)

where ṽmax , ṽmin, v z k˜ ( ( ))oc
NpR are vectors which are built from the

elements vmin, vmax and Voc(z(k)), respectively. Combining the con-
straints on current and voltage, the following inequality constraint is
obtained:

D
D

H
H

I k

i i k
i i k
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b
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min

max

min

(25)

The resulting QP problem of Eq. (17) subject to the inequality
constraint of Eq. (25) can be solved using a standard solver such as the
active set method to find the vector of current increments.

3.4. New cell SoP estimation

According to what developed in the previous sections, the new cell
SoP for each of the charge and discharge cases can be predicted through
the following steps:

• Step 1: The operating constraints for the applied LiFePO4 cell, pre-
diction and control horizons Np and Nc and the weight parameter γ
are chosen.
• Step 2: The matrices G, f, A and b of the QP problem are computed
according to the new cell data obtained in the previous section.
• Step 3: The optimal current increments I k( ) is calculated at each
time sample using a standard QP problem solver considering the
output SoC references of 100% for the charge case and 0% for dis-
charge.
• Step 4: Using the state space model of Eq. (9), the cell voltages along
the prediction horizon are computed applying the optimal current
increments I k( ) obtained in Step 3.
• Step 5: Multiplying the optimal current with the resulting cell vol-
tage for each time sample along the prediction horizon, a vector of
available power values is calculated. Then, the SoP for the new cell
is computed using the following equations:

SoP P P P

SoP P P P

min( , , ..., )

max( , , ..., )
dis
MPC

dis dis dis
N

chg
MPC

chg chg chg
N

1 2

1 2

p

p

=

= (26)

The aforementioned MPC-based estimation of the SoP for the new
cell is used as a basis for calculation of the SoP for an aged battery pack
consisting of series-connected cells.
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4. State of power estimation for series-connected cells

The new cell based SoP prediction developed in the previous section
is used as the basis for estimation of the pack power capability.
Assuming Ns to be the number of cells connected in series, the base
estimate of pack SoP can be calculated as follows:

SoP N SoP
SoP N SoP

dis
b

s dis
MPC

chg
b

s chg
MPC

=
= (27)

where SoPdis
MPC and SoPchg

MPC are defined by Eq. (26). We aim to propose a
model-less control system to obtain the actual pack SoP through a
closed-loop modification of the base SoP. The model-less control system
establishes a closed-loop interaction with the high-level control unit,
which is the VCU in this study. Since the same current passes through
the series-connected cells, the terminal voltage of the cells reflects the
differences in dynamic behavior of the cells. Therefore, the actual va-
lues of the current and cell voltages are used as the inputs of the model-
less control system to compensate for the influence of aging state and
SoC differences of the cells on the pack actual power capability. The
pack actual SoP is limited by the weakest cell which is the cell that first
reaches the SOA limits. Therefore, the actual SoP can be acquired
through adaptation of the base SoP estimation to the operating condi-
tions of the weakest cell. The following sections explain the details of
the proposed model-less control system design.

4.1. Model-less control system design for base SoP modification

As inferred from Eq. (1), the differences in voltage response of the
cells in a battery pack reflect different impedance parameters and open
circuit voltage of the cells. In this paper, we concentrate on the ECM
parameters change caused by only the cell SoC and SoH (as an indicator
of the cell aging state). Therefore, the designed control system uses the
actual current and terminal voltage of the cells to modify the base SoP
in a closed-loop manner so that the SoC and SoH differences of the cells
are compensated. The fuzzy logic controller is shown to be an appro-
priate candidate for control of nonlinear systems due to its easy im-
plementation and high flexibility [49–51]. In the current research, a
Fuzzy Logic Based Controller (FLBC) is designed to adapt the base SoP
estimation to various aging state and SoC of the cells according to on-
line data of the weakest cell in the pack.

In order to prevent the current and terminal voltage of the cells
exceeding the SOA limits, the adaptation process should be started
before reaching the limits. Accordingly, as depicted in Fig. 5 (a), three
operating regions are defined which determine the operating modes of
the FLBC. Region III indicates the unsafe operating region in which the
battery should be prevented to enter. In this regard, the parameters imax,
imin, vmax and vmin are the SOA limits which are usually reported by the
manufacturer. Region I and Region II indicate the SOA for the battery
and the parameters is

dis, is
chg , vs

dis and vs
chg indicate the secondary limits

from which the adaptation process is started to prevent the battery
entering Region III. Note that if the load varies such a way that the
battery remains in Region II, no modification of the base SoP is re-
quired. Therefore, in addition to the operating region and the current/
voltage values as the inputs of the controller, the instant rate of change
for battery current/voltage is also considered as the controller input.

According to what explained above, the structure of the FLBC de-
signed for base SoP modification is depicted in Fig. 5 (b). According to
the SOA limits of current and voltage and each of the charge and dis-
charge cases, separate FLBCs are defined where the normalized inputs
for each fuzzy controller is defined by Eq. (28).

e e
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e K e K de
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e e

i i i i
v v v v

i i i i
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e e

chg
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chg chg

s
chg

dis
s
dis dis

s
dis

min min

max max

max max

min min

= = =

=

(28)

The parameters Ke and Ku are input and output scaling factors, re-
spectively and ts indicates the time at which the battery reaches the
secondary limit. The output u determines the percentage of the base
SoP which should be applied to limit the battery within its SOA. A 3-D
view of the implemented fuzzy controller is depicted in Fig. 6, which
explains the operating modes of the fuzzy controller. Also, the mem-
bership functions of the input/output variables are illustrated in Fig. 7.
When the output u is 100%, no modification is performed on the base
SoP. The output decreases from 100 if e is PB (i.e. battery exceeds the
secondary limit) and e is negative. Starting the modification process
before reaching the SOA limits not only prevents the battery exceeding
its SOA limits using the closed-loop interaction with the VCU, but also it
can avoid rapid reduction of battery power in situations where the
power request from the battery is temporarily high like during vehicle
acceleration or regenerative braking.

The scaling factors Ke and Ku are obtained by trial and error and
listed in Table 1. As mentioned, for each side of the safe operating re-
gion shown in Fig. 5 (a), a separate controller with the same structure as
given by Fig. 5 (b) is developed. Therefore, the final output for the
FLBC, named “charge/discharge correction coefficient”, can be ac-
quired by Eq. (29). The subscripts “i” and “v” indicate the current-based
versus voltage-based modifications. The normalized correction coeffi-
cients are then multiplied by the obtained base SoP for each of the
charge and discharge cases.

u u u
u u u
¯ 0.01 min( , )
¯ 0.01 min( , )

dis
i
dis

v
dis

chg
i
chg

v
chg

= ×
= × (29)

4.2. Power capability estimation using hybrid MPC and FLBC

As mentioned before, the base SoP estimation should be modified

Fig. 5. (a) Operating regions of the battery, (b) structure of the FLBC.
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according to actual current and cell voltage values of the cell that first
reaches the SOA limits. Fig. 8 (a) and Fig. 8 (b) illustrate the process of
the pack actual SoP estimation for the charge and discharge cases, re-
spectively. As shown, the MPC algorithm is applied for base SoP esti-
mation using new cell data following the steps given in section 3.4. In
the meanwhile, the SoC for a single new cell is the only state which is
required to be co-estimated with the base SoP using Eq. (4). The current
and maximum/minimum cell voltages are used as the inputs of the
FLBC to obtain the percentage of the base SoP which should be applied

to prevent the battery violating the SOA limits. As a result, the FLBC
adapts the base SoP estimations to the current SoC and SoH states of the
cells.

Referring to the definition of battery SoP, the maximum available
battery power is achieved when the battery operates on the boundary of
its SOA. As mentioned before, the FLBC prevents the actual current or
cell voltages violating the allowable limits using a closed-loop inter-
action with VCU. In this case, battery operation on the SOA limits of
current or voltage (depending whether the current or voltage acts as the
power limiting factor) will be continued while the maximum available
power is requested from the battery. This may occur, for example,
during the acceleration or regenerative braking in which the requested
power from the battery is high for a short time. The correspondence
between the battery available power with its operation on the current
or voltage SOA limits is used as a basis for modification of the SoP
estimates. In this regard, in addition to transient modifications, if the
time duration of battery operation on the SOA limits is equal to or more
than the time window ΔT, the correction coefficient at the end of the
time window determines the permanent modification which should be
applied on the base SoP to obtain the pack actual power capability.
Obviously, this type of modification will also be updated with the
change of battery states when the same condition occurs.

5. Verification and discussion

The SoP estimation is commonly verified using constant current or
constant voltage pulses [23]. This is due to the fact that the real
available power of the battery for the upcoming time window in not
known. Accordingly, the SoP estimation is accurate if one of the fol-
lowing is achieved:

1) One of the cell voltages is equal to or hits the SOA limits during the
pulse (i.e. vmin or vmax) while the current is within its predefined
allowable region (i.e. imin< i< imax).

2) The current is equal to or hits the SOA limits during the pulse (i.e. imin
or imax) while the cell voltages are all within their predefined al-
lowable region (i.e. vmin< v< vmax).

The true value of battery available power corresponds with the
current or voltage value reaching exactly its allowable limits according
to one of the above conditions. Accordingly, the relative estimation
error can be defined as given by Eq. (30), which is similar to what
proposed by Waag et al. [23].

RE P
P

v v
v

or i i
i

(%) 100 100 100k klim

lim

lim

lim
= × × ×

(30)

The results are presented in two sections; First, the SoP is estimated
using MPC algorithm for a single new cell and the results are compared
with the previous studies. Then, the proposed hybrid MPC and FLBC
method is evaluated in a feed-forward simulation model for a series
hybrid electric city bus during driving cycle and the SoP estimations are
verified for series-connected cells with different initial SoC and SoH
values.

5.1. MPC-based SoP estimation results for new cell

In this section, the SoP estimation results for a single new cell are
presented. Relevant MPC algorithm parameters are listed in Table 2.
The estimations at three different SoCs of 30, 60 and 90% and time
windows of one, five and ten seconds are given in Table 3. The simu-
lation time step is chosen to be one millisecond. Also, for prediction
windows of one, five and ten seconds, the SoP estimation time steps are
assumed to be 0.1, 1, 1 s, respectively, which leads to prediction hor-
izons of 10, 5 and 10, respectively. The results are compared with those
developed by Sun et al. [27] in which the cell SoP is estimated assuming

Fig. 6. 3-D view of the implemented fuzzy controller.

Fig. 7. Fuzzy controller membership functions.

Table 1
Values of the scaling factors.

Type of FLBC Current-based Voltage-based

Scaling factor Ke Ku Ke Ku
Value 0.003 1.7 1 1.7
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a constant-current mode for the entire prediction horizon. In Ref. [27],
the maximum (minimum) constant discharge (charge) current which
leads to the voltage reaching its minimum (maximum) limit at the end
of the time window is calculated. Then, the battery available power for
the upcoming time window is computed through multiplication of the
obtained current with its resulting voltage at the end of the prediction
horizon, i.e. at time t+ΔT. In order to be similar with Ref. [27], the
control horizon is assumed to be one for all cases so that the constant-
current mode is provided.

In order to compare and verify the estimation results, the estimated
available power for each method is applied to the battery for ΔT sec-
onds and the relative error for each case is calculated. As shown in
Figs. 9 and 10, the average relative errors for MPC-based estimation
method are 1.81% and 0.27% for the discharge and charge cases, re-
spectively, while these values for the estimation method of Ref. [27] are
3.59% and 0.79%, respectively.

For a detailed evaluation, the change in battery current, voltage and
SoP estimates during the prediction time window are represented for
two sample cases. Fig. 11(a) to (c) show the verification test results for
the case in which the prediction time window and the initial SoC are
one second and 30%, respectively. In this test, as depicted in Fig. 11 (a),
the estimated available power at charge and discharge cases are applied
to the battery constantly for one second. The upcoming estimates of SoP
during the time window are also depicted in Fig. 11 (a) where the
applied power is equal to the initial estimate of available power, as

Fig. 8. The actual SoP estimation for the battery pack using hybrid MPC and FLBC, (a) discharge SoP, (b) charge SoP.

Table 2
Relevant MPC parameters for SoP estimation.

Parameter Np Nc γ zref
chg zref

dis imax imin vmax vmin

Value 5,10 1 10−7 1 0 150 A −30 A 3.65 V 2.1 V
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expected. Fig. 11 (b) and (c) show the change of battery current and
voltage during the time window, respectively. For the charge case, as
can be concluded, the battery current is the limiting factor for obtaining
the available power. Therefore, the deviation between the current and
its minimum allowable value (which equals -30 A) is an indicator of SoP
estimation accuracy. As can be seen in Figs. 11 (b) and Fig. 10 (vali-
dation test number one), the relative error in this case is near zero for
the MPC-based estimation while the method of Ref. [27] results in the
relative error of about 0.7%. For the discharge case, the limiting factor
is the voltage and therefore, the deviation between the cell voltage and
the minimum allowable value of 2.1 V at the end of the time window

indicates the relative accuracy of SoP estimation which is compared in
Fig. 9 (validation test number one).

For the case in which the prediction time window and the initial SoC
are ten seconds and 90%, respectively, the results are shown in Fig. 11
(d) to (f). In this case, the cell voltage acts as the limiting factor for the
available power achievement in both of the charge and discharge
conditions. As depicted in Fig. 11 (f) and Fig. 10 (validation test number
nine), the relative errors for both methods are nearly the same for the
discharge case. However, for the charge case, the relative estimation
errors for the MPC-based method and Sun et al. method are 2.6% and
5.9%, respectively.

According to what presented in this section, it can be concluded that
using MPC algorithm, the accuracy of SoP estimations is improved, thus
providing a better safe performance of the battery in sense of the ability
to deliver or receive power.

5.2. Series-connected cells SoP estimation results

In this section, the series HEV simulation model results are pre-
sented [52]. But first, in order to evaluate the computational cost of the
present method, the total computation time for the SoP estimation
method in different test cycles are compared with those presented by
Jiang et al. [38]. The estimation methods are executed on a PC with
2.4 GHz CPU and 4 GB RAM. As given in Table 4, the proposed tech-
nique reduces the computational cost while achieving accurate esti-
mations of battery pack power capability, as will be demonstrated in
the following. This is due to the fact that in Ref. [38] the ECM para-
meters of all the cells should be identified on-line in order to consider
their different aging states. But in the present methodology, only the
new cell ECM parameters are utilized which are identified off-line.

As explained in section 4, the model-less FLBC uses the actual cur-
rent and cell voltages to modify the base SoP estimates through a
closed-loop interaction with the VCU. Accordingly, the pack-level SoP
estimates are evaluated using a feed-forward simulation model for a
series hybrid electric city bus which is investigated in Tehran heavy
duty vehicle driving cycle [52]. Without loss of generality, the results
are obtained assuming that each battery pack is made up of four series-
connected LiFePO4 cells with the initial states given in Table 5. The
battery pack consists of the new and aged cells with different initial SoC
values.

For verification, the ECM for a sample aged cell is extracted using
the experimental setup in just the same way as the new cell. The ca-
pacity of the sample aged cell is obtained to be 9.84 Ah using the
procedure explained in section 2.2. The actual cell voltage for the aged
cell sample is then obtained from the ECM and used as inputs of the SoP
estimation method. The time step for estimation of the SoP is assumed
to be 250ms and the prediction and control horizons are considered to
be 4 and 2, respectively, which means that the estimation is performed
for the prediction time window of one second.

Fig. 12 shows the results applying the hybrid MPC and FLBC for
battery pack SoP estimation. As shown in Fig. 12 (a) and (b), during the
first half of the cycle, the battery operates within the safe operating
region and therefore, no modification is performed on the base SoP

Table 3
MPC-based SoP estimation results compared with Sun et al. method.

SoC (%) State SoP (W), MPC method SoP (W), Sun et al. method

ΔT=1 sec ΔT=5 sec ΔT=10 sec ΔT=1 sec ΔT=5 sec ΔT=10 sec

30 Charge −105.631 −105.631 −94.0581 −106.326 −108.757 −94.6842
Discharge 312.61 256.73 204.315 310.358 243.514 196.955

60 Charge −105.968 −105.968 −104.423 −106.432 −108.142 −104.357
Discharge 290.202 250.039 208.526 288.657 239.946 202.366

90 Charge −107.622 −95.8203 −72.7666 −108.403 −92.2741 −72.6957
Discharge 304.96 238.589 187.11 302.025 224.693 180.644

Fig. 9. MPC-based relative estimation error at discharge compared with Sun
et al. method.

Fig. 10. MPC-based relative estimation error at charge compared with Sun
et al. method.
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estimation. For the discharge case, the under-voltage limit reaches
earlier than the discharge current limit and the power capability is
consequently limited by the cell voltages. In this case, modification of
the base SoP is started at around the 955th second of the cycle where at
least one cell is reaching the voltage limit. This time interval of the
cycle is magnified in Fig. 13 (a) to provide a close observation of the
results. The weakest cell at this time is Cell 1 which first reaches the
voltage limit. At this time, the base SoP is modified using the discharge
correction coefficient which decreases from 100% (Fig. 12 (d)) to
compensate for the aging state and SoC differences between the cells.

Fig. 11. Verification tests for MPC-based estimation versus Sun et al. method for two sample cases of ΔT=1 s, SoC0=30% and ΔT=10 s, SoC0= 90%, (a), (d)
maximum/minimum power, (b), (e) current, (c), (f) voltage.

Table 4
Computational cost of the present method compared with Ref. [38].

Test Cycles Computation Time (seconds) Time Reduced (%)

Ref. [38] Present Method

NEDC 1.28 0.95 25.8
FTP75 2.66 1.83 31.2
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Table 5
Initial state of the cells for verification test.

Cell number Cell 1 Cell 2 Cell 3 Cell 4

State SoC SoH Capacity
(Ah)

SoC SoH Capacity
(Ah)

SoC SoH Capacity
(Ah)

SoC SoH Capacity
(Ah)

Value 58% Aged 9.84 62% Aged 9.84 59% New 10.58 56% New 10.58

Fig. 12. Hybrid MPC and FLBC results in Tehran driving cycle, (a) cell voltages, (b) current, (c) SoP estimations, (d) correction coefficients, (e) relative estimation
error.
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The power capability on charging is limited by the current since the
current limit (i.e. imin = -30 A) reaches sooner than the voltage limit
(i.e. vmax =3.65 V). The first modification on the charge base SoP is
applied around the 968th second of the cycle as depicted in Fig. 12 (b).
At this time, the charge correction coefficient decreases from 100%
(Fig. 12 (d)) to correct the base SoP estimation. The effect of the
modification process on battery current can be seen in Fig. 13 in a
magnified view where the charge current is controlled not to violate its
allowable region.

In Fig. 12 (c), the estimated SoP for the pack is compared with the
case in which no adaptation to the aging state and SoC variations
among the cells is considered. By starting the adaptation process, the
base SoP estimate is limited to prevent the weakest cell violating the
allowable current or voltage boundaries.

Fig. 12 (e) represents the relative estimation errors for the voltage or
current pulses during the cycle which are obtained from Eq. (30). As
mentioned previously, the definition of the relative estimation error
differs for the current and voltage pulses depending whether the current
or voltage acts as the limiting factor for the pack power capability. As
can be seen, the average relative error for the whole cycle is about
0.73% and its maximum value is about 1.7%.

The results indicate that utilizing only the ECM parameters of the
new cell, which are identified off-line, the SoP is estimated accurately
for series-connected cells with concurrent SoC and SoH differences.
Moreover, the safe current and voltage operating regions for all the cells
are guaranteed in HEV which again proves the effectiveness of the
present method.

6. Conclusion

In the present study, a new approach is proposed to estimate the SoP
for a Lithium-ion battery pack considering the concurrent SoH and SoC
variations of the cells. A MPC-based algorithm is first employed to
obtain a base estimation of SoP for an assumed balanced new pack.
Accordingly, at nine different cases, the estimations are verified and
compared with those obtained by the most common SoP estimation
method and the results confirm the higher accuracy of MPC-based es-
timations. At the second stage, a fuzzy logic based control system is
designed to modify the MPC-based estimations compensating for the
inconsistencies present in SoH and SoC values of the cells. In this re-
gard, the actual current and cell voltages are used in a closed-loop
framework, thereby eliminating the need for on-line co-estimation of
SoH and SoC values for the cells together with the SoP estimation to
consider the cell-to-cell inconsistencies. Experiment and simulation
results prove the promising performance of the proposed method to-
wards accurate estimation of the power capability and guaranteed safe
operation of the battery pack. The future work will focus on the in-
clusion of battery temperature variation and hardware-in-the-loop si-
mulation of the proposed SoP estimation technique.
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Fig. 13. (a) Start of discharge SoP modification, (b) start of charge SoP modification, (c), (d) magnified intervals of the cycle.
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