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A B S T R A C T

Pedestrian destination choice models are among the issues that have not been adequately addressed by trans-
portation researchers. Several issues should be considered in order to develop a pedestrian destination choice
model, including the method used to generate destination choice sets as well as the specification of different
environmental variables that influence walking. Although some studies use built environment variables to
elaborate on pedestrian destination choice models, almost all of them neglect the importance of the choice set
generation method and rely merely on the random sampling method. This study illustrates the extent to which a
choice set generation method can influence the parameter estimates of a pedestrian destination choice model.
Here, in addition to the random sampling method, the method of stratified importance sampling is addressed to
develop a pedestrian destination choice model for the city of Rasht, Iran. In addition, an exhaustive array of built
environment variables that are known to have a significant effect on walking is employed. The results suggest
that using stratified random sampling can improve the destination choice model in both goodness of fit and
percent correct of the prediction of pedestrians' destination. The relative importance of environmental variables
with respect to altering the pedestrians' destination choices is demonstrated through their elasticities' values.
Two scenarios, which aim to improve the walking environment by enhancing network connectivity, are ex-
amined. As a result, the pedestrian catchment area is suggested to be the most effective variable of network
connectivity. The results of these scenarios can assist policy makers to identify zones that deserve more atten-
tion.

1. Introduction

Walking can benefit the transportation system and its users in many
ways such as mitigating congestion, providing access to public transit
services, trivial cost of travel compared to motorized modes of trans-
portation, and health benefits (Higgins, 2005; Lamíquiz and López-
Domínguez, 2015; Lundberg and Weber, 2014; Morency et al., 2007;
Schlossberg and Brown, 2004). Furthermore, contrary to the motorized
modes of transportation, walking is an environment-friendly mode be-
cause it does not consume nonrenewable energy sources, which helps to
reduce the amount of greenhouse gas emissions (Higgins, 2005;
Morency et al., 2007). Consequently, recognizing the influential factors
that make destinations more favorable for walking can be used in policy
analysis to enhance walking as an urban mode of transportation in daily
trips.

There is a general consensus about the effects of the built environ-
ment on walking. Different features of the built environment such as
population density, network design, and land use patterns are shown to

affect walking frequency or walking as a mode of choice (Dill, 2004;
Ewing and Cervero, 2010; Frank et al., 2005; Gori et al., 2014;
Schlossberg and Brown, 2004; Hatamzadeh et al., 2017a). On the other
hand, few studies have incorporated the features of a built environment
into pedestrian destination choice models (Clifton et al., 2016a).

The pedestrian destination choice model is a practical tool to dis-
tribute trips, and can thus be used to predict walking trip demand. This
approach arms planners with robust tools to decide on different types of
pedestrian investments such as pedestrian infrastructures. Its results can
also serve as inputs for other pedestrian analyses regarding the health
benefits of walking and transportation sustainability, and quantify the
potential for mode shift, resulting in the reduction of greenhouse gas
emissions (Clifton et al., 2016a). The pedestrian destination choice
model that is sensitive to the features of a built environment can help
decision makers to formulate policies favoring pedestrian-oriented en-
vironments.

There are inherent differences between choice behavior of motor-
ized and non-motorized modes. One of influential factor in destination
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choice is distance which has different effects on individuals with dif-
ferent modes of travel. Indeed, non-motorized users are more sensitive
to distance than motorized users as destination choice studies indicate
(Richards and Ben-Akiva, 1974; Yang et al., 2009). The greater disin-
clination toward distance from non-motorized users is because longer
distance is confounded by fatigue and physical fit that may result in
greater coefficient of distance in destination choice studies for walking.
This effect can be understood through a study by (Heilig et al., 2017)
that shows trip length of less than one kilometer has opposite effect on
utility of walking compared to public transit and car. Another influ-
ential factor in destination choice is travel time. The different weight of
in-vehicle and out of vehicle time for transit and car trips shows the
different effect of time on motorized and non-motorized part of travel
(Richards and Ben-Akiva, 1974). Such innate differences indicate dis-
similar choice behavior of users of different travel modes. In case of this
study, walking is focused on to elaborate to what extent built-en-
vironment variables can influence walking destination choices.

In developing a destination choice model for pedestrians, various
issues should be taken into consideration such as the different features
of the built environment as well as the choice set generation method for
model calibration. Although few studies have used built environment
features for destination choice model calibration (Clifton et al., 2016a;
Eash, 1999; Khan et al., 2014), to the best of the authors' knowledge, no
study has examined the effects of different choice set generation
methods on the pedestrian destination choice model. This paper con-
tributes in two ways to enhance the knowledge of pedestrian behavior.
It not only develops a pedestrian destination choice model that is sen-
sitive to the built environment features, it also evaluates the effects of
two different choice set generation methods on the estimations of a
pedestrian destination choice model.

As per suggestions, the generation of choice set is of great im-
portance since it influences the destination choice model estimations
(Horni et al., 2010; Pellegrini et al., 1997). The universal destination
choice set contains numerous alternatives, which makes model esti-
mation difficult and expensive (Bierlaire and Robin, 2009; Clifton et al.,
2016a; Lemp and Kockelman, 2012). Furthermore, an individual rea-
listically considers only a limited portion of the universal choice set
(i.e., real choice set) that is conceivable for him/her; therefore, a rea-
listic model should ignore the destinations that are not in an in-
dividual's choice set. Additionally, different perceptions of available
destinations result in different choice sets for individuals. Therefore, to
be more realistic, an analyst should consider different choice sets for
different individuals (de Dios Ortúzar and Willumsen, 1994). Although
different studies have proposed several methods to generate destination
choice sets (Ben-Akiva and Lerman, 1985; de Dios Ortúzar and
Willumsen, 1994; Lemp and Kockelman, 2012; Pagliara and
Timmermans, 2013), no study has focused on the generation of desti-
nation choice set for pedestrians.

It is noteworthy that this paper applies a pedestrian destination
choice model to the city of Rasht, Iran. Rasht, as a developing city, is
deprived of pedestrian infrastructures and its public transit system does
not adequately meet the demands of travelers' transportation.
Therefore, the application of a pedestrian destination choice model can
give an insight into more walkable destinations for pedestrians and
enable city planners to promote a walking environment.

This paper contributes to the literature on walking with its unique
evaluation of the methods of choice set generation. Besides, it evaluates
an extensive set of built environment variables that are addressed as
influential factors regarding walking. Considering the dearth of litera-
ture on walking destination choice behavior (Clifton et al., 2016a,
2016b), this study sheds light on a more practical tool for choice set
generation and utilizes it to explore the determinants of walking des-
tination choice behavior.

The remainder of this paper consists of the following parts, re-
spectively: First, brief literature on the choice set generation methods
and pedestrian destination choice studies are presented. Then, the study

area is introduced accompanied by a detailed description of the data.
Next, the method and its application in the context of Rasht city are
explained followed by its results. The paper concludes with a discussion
of the applications of the pedestrian destination choice model devel-
oped here.

2. Literature

The methods adopted to generate the choice set affect the estimated
parameters of the destination choice model as well as the predicted
market share (Pagliara and Timmermans, 2013). To determine the
available alternatives in a destination choice set, different methods of
choice set generation are employed. These methods use either de-
terministic rules (de Dios Ortúzar and Willumsen, 1994; Pagliara and
Timmermans, 2013) or sampling methods (Ben-Akiva and Lerman,
1985; Lemp and Kockelman, 2012). The deterministic rules allow an
analyst to exclude unavailable alternatives from a choice set based on
data. The availability of an alternative within a choice set can be de-
termined by using data from the sample or by directly asking re-
spondents (de Dios Ortúzar and Willumsen, 1994; Muhs et al., 2015;
Pagliara and Timmermans, 2013).

Sampling methods propose a two-step process to estimate the choice
probabilities. The first step is the generation of a choice set by defining
a probability distribution function over all the possible choice sets, and
in the second step, regarding the probability of each of the specific
choice sets determined in the previous step, a probability of choosing
each alternative is estimated. Sampling methods reduce the computa-
tional difficulty of choice probability estimation, especially in the case
of large choice sets (Ben-Akiva and Lerman, 1985). Different ap-
proaches are adopted in sampling. While some studies randomly draw a
sample because of less complexity, other studies use non-random
sampling, which offers a more economical method as well as more
precise estimations of parameters (Lemp and Kockelman, 2012; Ben-
Akiva and Lerman, 1985; de Dios Ortúzar and Willumsen, 1994). The
distinction between these approaches is that in random sampling, the
alternatives are selected by uniform probabilities, while in non-random
sampling, the alternatives are selected by non-uniform probabilities,
which results from assigning different levels of importance to the al-
ternatives based on an analyst's intuition (Ben-Akiva and Lerman,
1985). Ben-Akiva and Lerman developed an importance sampling
through the non-random sampling approach. This approach results in
more efficient choice sets that contain the alternatives that are likelier
to be chosen (Ben-Akiva and Lerman, 1985). Lemp and Kockelman
proposed the “strategic sampling scheme” through the concept of im-
portance sampling. This approach confirms better estimations of the
parameters on an average compared to random sampling (Lemp and
Kockelman, 2012). To prevent the need for calculating the specific se-
lection probability for each alternative, Ben-Akiva and Lerman in-
troduced a method called stratified importance sampling. In this
method, the universal set of choices is stratified into mutually exclusive
and collectively exhaustive subsets. This importance-based stratifica-
tion gives different selection probabilities for each strata, while uniform
selection probabilities are retained within each strata (Ben-Akiva and
Lerman, 1985).

Most pedestrian destination models take advantage of the easiest
approach of sampling (i.e., random sampling). In the process of de-
veloping a destination choice model for pedestrians, Clifton et al. used
choice sets that contained 10 random alternatives within a three-mile
(4.8 km) network distance from each origin zone (three miles is equal to
or greater than the length of> 99% of the observed walk trips) (Clifton
et al., 2016a). In another study on non-motorized modes, Eash drew a
sample that included 50 possible destinations within two miles (3.2 km)
X-plus-Y distance from each origin zone, in addition to the real desti-
nation to form choice sets. It is worth noting that in his study, the
majority of the studied trips occurred in< 3.2 km (Eash, 1999). Khan
et al. developed a destination choice model for non-motorized trips by
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using random choice sets comprising 40 alternatives, including the real
destination (Khan et al., 2014).

The above paragraphs show the different strategies used to generate
choice sets in earlier studies. Furthermore, none of the aforementioned
studies has delved into the possible effects of the pedestrian destination
choice sets on model estimation. Therefore, the present study attempts
to address this gap in the literature through the case of Rasht.

3. Study area

Rasht is the largest city on the Caspian Sea coast in Iran (Fig. 1).
According to the 2006 census, its population exceeds 550,000 people.
The prevailing transportation modes used in daily trips are cars, taxis,
motorcycles, buses, and non-motorized modes (i.e., biking and walking)
(Hatamzadeh et al., 2017a). It is noteworthy that the existing transit
infrastructure cannot adequately meet the citizens' travel demands, and
this city does not have any mass transit system. This leads to cars and
taxis being the primary modes of transportation for meeting travel
demands in the city (Hatamzadeh et al., 2014). The radial pattern of
development in Rasht leads to a radial street pattern as observed in the
majority of streets. Furthermore, the presence of the traditional bazaar
and main retail centers has turned the city's central part into a con-
gested area. Due to this congestion, sparse commercial activity has been
emerging out of the city center through the years (Azimi, 2005).

4. Data

In this study, the data on walking trips are derived from a Rasht
travel survey carried out in November 2007. In this survey, travel
diaries were reported by 5000 resident households of Rasht. Here, the
traffic analysis zone (TAZ) is selected as an analysis unit; the city of
Rasht is divided into 112 TAZs. The exact locations of the origin and the
destination of pedestrians were not available in the data, which led us
to take the TAZs' centroid as the respondents' origin/destination. It is
worth noting that the average of the TAZs' equivalent radius is 328m
(the equivalent radius is the square root of the quotient that is obtained
by dividing the average TAZs' area by pi). This vindicates choosing the
TAZ as an analysis unit in this research because people almost walk
distances up to 400m (Mavoa et al., 2012). Out of all the daily trips,
roughly 33% comprises walking, which elucidates the significance of
walking as one of the important transportation modes in Rasht.

To investigate the potential effects of the built environment on the
destination choice behavior of pedestrians, various indices and vari-
ables are extracted from the literature. These variables primarily de-
termine land use diversity and transportation network connectivity.

To understand the level of diversity of land uses within origin/
destination zones, two indices-entropy (Ewing et al., 2014) and job-
population balance (Ewing et al., 2014)-are calculated. Briefly, entropy
determines the comparative distribution of different land uses in a zone,
and it is calculated with regard to the percentage of different land uses
within each TAZ (Ewing et al., 2014). Another land use index is the job-
population balance. In short, it indicates the balance between the jobs

Fig. 1. The study area (Hatamzadeh et al., 2017a).
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and the population within a TAZ, and it is calculated with regard to the
employment opportunities in a zone and its population (Ewing et al.,
2014). Readers interested in further details about the two indices are
referred to the mentioned references. As another influential factor on
walking, the population density of each TAZ is calculated. Neighbor-
hoods with greater density can generate more walking trips (Ewing
et al., 2014).

The transportation network connectivity variables are found to in-
fluence walking. Several variables determine the level of network
connectivity in the literature, including intersection density (Dill, 2004;
Lundberg and Weber, 2014), percentage of four-way intersections
(Southworth and Owens, 1993), density of cul-de-sacs (Schlossberg and
Brown, 2004), the ratio of intersections per all the nodes in the network
(Dill, 2004), links' density (Dill, 2004; Lundberg and Weber, 2014), and
the ratio of minor links to major links (Dill, 2004). These variables
demonstrate the network connectivity in terms of links and nodes. For
the sake of brevity, those who are interested in further details of these
variables could look at the mentioned references. To account for mul-
ticollinearity among these variables, this paper takes advantage of a
connectivity index developed by Hatamzadeh et al. for the city of Rasht
by using a principal component analysis (Hatamzadeh et al., 2017a).
This index accounts for connectivity in terms of link and node con-
nectivity factors. The link-connectivity factor consists of link density
and the ratio of minor roads to major roads, and the node-connectivity
factor contains a percentage of four-way intersections and the ratio of
intersections to nodes. Readers interested in a more comprehensive
explanation of this index are referred to the research of (Hatamzadeh
et al., 2017a).

In order to get a sense of the road network circumstances that a
pedestrian experiences during his/her travel, the Pedestrian Catchment
Area (PCA) is calculated for all TAZs by ARC GIS 10.2. The PCA is
derived by dividing the area of a polygon obtained by 400m of walking,
in terms of network distance, from the TAZ's centroid to every direc-
tion, by the area of the 400-m-radius Euclidean buffer with the same
center (Schlossberg and Brown, 2004). To illustrate this, Fig. 2 shows
the PCA for a given zone.

In addition to the previous variables, Southworth and Owens in-
troduced a classification that reflected different network configurations.
Other studies use such network configuration introduced in the men-
tioned study to investigate their effects on walking (Habibian and
Hosseinzadeh, 2018; Hatamzadeh et al., 2017b; Sandalack et al., 2013;
Schlossberg et al., 2015). These configurations fall into five patterns
(Fig. 3). They established their classification of street pattern config-
uration on the idea that street pattern is an indicative of quality of a
neighborhood in terms of devoted infrastructure, route options and
street connectivity. Observing residential design over 50 years, South-
worth and Owens concluded street patterns are transitioned from in-
terconnected to more disconnected which translates into more loops

and cul-de-sacs. Therefore, they used five typologies to delineate
changes of street connectivity. They described "the Gridiron" pattern as
the most interconnected pattern that suggests a higher choice set of
routes. This pattern is accompanied by more intersections and access
points and consequently more short trips. This is the pattern that brings
about the most walkable neighborhood. Second to Gridiron pattern is
“Fragmented Parallels” which is different from former pattern in sev-
eral aspects. The equal sized grids turn into L-shapes blocks which
decrease connectivity by T-intersections and L-shaped corners and,
consequently, less route alternatives and access points. The third pat-
tern “Warped Parallels” features with a curvilinear pattern and occa-
sional cul-de-sacs. This pattern encourages automobile use by its de-
creased connectivity. “Loops and Lollipops” offers limited route choice
and creates a user disoriented neighborhood. Frequent loops abstain
pedestrians from accessing to anywhere except few choices such as
houses and schools. This pattern increases motorized vehicle trips and
directs traffic to few arterials which makes neighborhood not suitable
from a pedestrian point of view. “Lollipops on Stick” which is on the
opposite extreme to the “Gridiron” pattern features with dead-end loops
and large blocks. As a result, interconnectivity is limited. Respectively,
the level of connectivity decreases from the grid to the lollipops on a
stick pattern. Highly connected networks are characterized by a grid
pattern, which provides pedestrians with more route alternatives
(Ewing et al., 2014; Ewing and Cervero, 2010).

The five different patterns are attributed to each TAZ based on the
analyst's intuition of the network within each TAZ. As many as 44 TAZs
out of 112 resemble the loops and lollipops pattern, which is the most
observed pattern in Rasht. According to the classification by
Southworth and Owens (Southworth and Owens, 1993), five dummy
variables corresponding to each pattern are assigned to each TAZ to
show the network pattern within the TAZ. That is, for each TAZ, one of
the dummy variables reflecting the TAZ's network pattern equals 1 and
the four remaining dummy variables are set as 0. Table 1 provides the
descriptive statistics of the aforementioned variables.

5. Methodology

Discrete choice models are based on the random utility theory and
have been used widely in the context of travelers' choice behavior (Ben-
Akiva and Lerman, 1985). As per this approach, pedestrian n chooses
destination j from the destination alternatives within a choice set Cn

that she/he has. Each destination j gives a utility Ujn to a specific pe-
destrian n. In this theory, it is expected that pedestrian n chooses the
destination with the highest utility. This utility function consists of a
systematic part Vjn, and an error term εjn. Therefore, for each pedes-
trian:

= +U V εjn n jnj (1)

Fig. 2. PCA illustration.
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The systematic part, Vjn, explains the observed attributes of desti-
nation j for pedestrian n. The most often assumed form for systematic
utility is linear function (Eq. (2)).

= + …+V β X β Xjn jn jn kjn kjn1 1 (2)

where built environment variables (X1jn,… , Xkjn) are weighted by
parameters (β1jn,… , βkjn) to explain built environment variables' mar-
ginal utility.

The error term, εjn accounts for the unobserved aspects of that
specific destination for pedestrian n.

Therefore, the probability that pedestrian n selects destination j is:

= > ∀p j C U U iϵC( | ) Pr( ; )n n jn in n (3)

The different distributions for εjn result in various types of choice
models. In the context of the destination choice model, the multinomial
logit model (MNL) is applied to predict the destination choice behavior
(Clifton et al., 2016a). Generally, the MNL model assumes that all the
error terms, εjn,are distributed independently and identically, and they
follow a Gumble distribution (Ben-Akiva and Lerman, 1985). The MNL
model uses the following probability function to predict pedestrian n
choosing destination j:

=
∑ ∈

p j C e
e

( | )n n
V

i C
V

jn

n
in (4)

Unlike the mode choice models in which the analyst faces small
choice sets, the size of destination choice sets can be very large. As a
result, the choice-sampling methods can offer more simplicity in esti-
mating the destination choice model. Therefore, it is crucial to adopt a
sampling method to develop the destination choice sets instead of using
the universal choice set. Due to the bias caused by the sampling
method, Eq. (4) should be adjusted. Eq. (5) shows the adjusted prob-
ability of choosing destination j by pedestrian n through a sampling
method:

=
∑

+

∈
+p j D e

e
( | )n n

V P D j

i D
V P D i

( ln( ( | ))

( ln( ( | ))

jn n

n
in n (5)

Here P(Dn| j) is the probability of generating a choice set Dn, in-
cluding the destination j by using a sampling method. If the adopted
sampling method meets the positive conditioning property (i.e., P

(Dn| i) > 0; ∀ iϵD), then McFadden shows a sampling method that
culminates in consistent parameter estimates for the logit models
(McFadden, 1978). It is noteworthy that if random sampling is adopted,
the probability of generating any choice set becomes equal and the term
P(Dn| j) cancels out from Eq. (5), and thus no adjustment is needed. In
this paper, in addition to the random sampling method that randomly
draws a sample of 10 alternatives, a stratified importance sampling
method is taken into account to enable us to compare the efficiency of
the parameter estimates in both sampling methods. In this study, to
apply the stratified importance sampling method, the universal choice
set for each pedestrian, containing 112 TAZs, is divided into three non-
overlapping strata: 1) the origin zone, 2) all zones located within the
90th percentile of cumulative walking trip length distribution (i.e.,
1660m) from the origin zone (but not including the origin zone itself),
and 3) the remaining zones in the city of Rasht. Therefore, Srn is the
number of choices in stratum r (r=1, 2, 3) for pedestrian n, where
∑ == S 112r rn1

3 . For each pedestrian, the generated choice set consists of
all the zones of the first two and none from the third stratum in addition
to the observed destination (if it is not included). To explicate this issue,
let ∼Srn be the sample size of stratum r and r(j) be the stratum containing
destination j. The stratified importance sampling method draws

−∼S 1r j n( ) samples from the stratum containing destination j (i.e., r(j))
and ∼Srn samples from the remaining strata. The probability of selecting
a choice set Dn including the destination j is then:

∏ ⎜ ⎟= ⎛

⎝
⎜

−
−

⎞

⎠
⎟

⎛
⎝

⎞
⎠

∼ ∼

−

=
≠

−

P D j
S
S

S
S

( | )
1
1

n
r j n

r j n r
r r j

rn

rn

( )

( )

1

1
( )

3 1

(6)

By substituting Eq. (6) for Eq. (5), the value of Pjn for each pedes-
trian can be predicted.

After preparing an appropriate dataset for each of the investigated
sampling methods, the environmental variables for both endpoints of a
trip (i.e., origin zone and potential destination zone) are calculated and
used as per the specification of systematic utility.

6. Results

Before model estimation, a correlation test is performed to ensure
that no intercorrelation exists between the explanatory variables.

Fig. 3. Different network configuration (Southworth and Owens, 1993).

Table 1
Descriptive statistics of built environment variables.

Variable Average Standard deviation Unit

Connectivity Percentage 4 way intersection 14.10 6.44 -
Link density 0.22 0.09 km/km2

Minor roads to major roads ratio 11.57 25.63 -
Intersections to total nodes ratio 0.62 0.10 -
Pedestrian catchment area 0.35 0.13 -

Land use Entropy 0.33 0.19 -
Job-Population balance 0.56 0.29 -

Density Population density 10100 6600 Person/km2
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Therefore, a set of independent explanatory variables containing the
environmental features of both the origin and the destination is used to
estimate the pedestrian destination choice models based on each sam-
pling method. After model calibration, only the significant variables
remain in the final models. The results are consistent with intuition and
also confirm previous research on walking. Table 2 shows the results of
the pedestrian destination choice models through random and stratified
importance sampling methods.

All the variables in Table 2 become significant at the 1% level. The
results reveal that the distance deters pedestrians from walking to
destinations, which is in line with other studies on walking behavior
(Clifton et al., 2016b; Eash, 1999; Khan et al., 2014; Lundberg and
Weber, 2014; Millward et al., 2013; Saelens and Handy, 2008). The
greater population density at destinations render walking to such des-
tination more likely which is in alignment with another pedestrian
destination choice study (Clifton et al., 2016b). Furthermore, both
models demonstrate the essential role of diverse land uses in encoura-
ging pedestrians to walk to their intended destinations. This finding is
in accordance with other studies that recognize land use diversity as a
characteristic of a pedestrian-friendly environment (Clifton et al.,
2016b; Khan et al., 2014; Peiravian et al., 2014). The results also show
the positive influence of network connectivity on walking to a desti-
nation; however, as far as we know, the effect of network connectivity
has not been addressed in previous studies on pedestrian destination
choice models. It is noteworthy that other studies found a meaningful
relationship between connectivity variables used in this study (re-
presented by variables of link connectivity factor, pedestrian catchment
area and loops and lollipops pattern) and overall walking behavior
(Gori et al., 2014; Hatamzadeh et al., 2017b; Habibian and
Hosseinzadeh, 2018).

The model that uses the stratified importance sampling method
excels in terms of goodness of fit, which is indicated by the pseudo-R
squared value. As pseudo-R squared can be used to compare the dif-
ferent specifications developed on the same data (Ben-Akiva and
Lerman, 1985), the results suggest that the stratified importance sam-
pling method may end with better goodness of fit compared to the
random sampling method. Furthermore, it is suggested that pseudo-R
squared between 0.2 and 0.4 can be compared to values between 0.7
and 0.9 of R-squared with respect to linear regression (Colombo et al.,
2005). Besides, in other destination choice studies McFadden R-squared
have comparable values (0.04–0.3) (Auld and Mohammadian, 2011;
Bernardin Jr. et al., 2009; Huang and Levinson, 2015; Newman and
Bernardin, 2010; Yang et al., 2009). Accordingly, the model that em-
ploys the stratified importance sampling method can be considered as a
good-fit model.

To validate the models, the value of percent correct of each model is
determined. To calculate the percent correctness, the model's predicted
destination having the highest estimated probability of being selected is
compared with the actual destination. If the predicted destination
matches the actual destination, the model predicts correctly. The per-
cent of correct predictions of the model using the random sampling

method is 25.83%. The stratified importance sampling model correctly
assigns destinations to 43.74% of all walking trips, which is twice better
than the similar measure of its competitive method. Consequently, this
superior estimation justifies the effort put into using the stratified im-
portance sampling method.

To understand the extent to which the variables can change the
probability of choosing the actual destination, the relative point elas-
ticity for each variable in the model using stratified importance sam-
pling is calculated. Elasticity gives a unitless measure to compare the
importance of variables in terms of predicting the pedestrian's choice.
According to its definition (Ben-Akiva and Lerman, 1985), elasticity
measures the percentage of change in the probability of choosing an
observed destination given 1% of change in a given variable. Fig. 4
shows the variables' elasticity using the method of “probability
weighted sample enumeration” by which the elasticity for each pe-
destrian is calculated and weighted by the pedestrian-associated prob-
ability of choosing the observed destination. However, the calculation
of elasticity is not meaningful for the dummy variable that takes 0 or 1
(i.e., loops and lollipops pattern).

Fig. 4 demonstrates that distance is the most influential variable
that deters pedestrians from walking to their destinations; in other
words, a 1% increase in walking distance corresponds to a 0.84% de-
crease in the probability of choosing the actual destination for walking.
On the other hand, diverse land uses at the destination in the form of
population density, entropy, and job-population balance surpass net-
work connectivity. It is worth noting that among the network con-
nectivity variables, the PCA index is the most influential. The PCA gives
more detailed information about the network circumstances, including
information about the relative number of links and their straightness.
Therefore, this index gives more robust insights to policy makers, rather
than merely using the number and type of links as offered by the link-
connectivity factor.

To illustrate the results of the pedestrian destination choice model
using stratified importance sampling, the value of the utility function of
each TAZ is calculated according to its coefficients in Table 2. In this
context, the distance variable for each TAZ is substituted by the average
of that TAZ's distance to the other 111 TAZs, while the remaining
variables are fixed to their respective values based on environmental
data. It is expected that the greater the utility of a TAZ, the greater will
be its attraction for pedestrians to choose it for walking. Fig. 5 depicts
the normalized values of the 112 TAZs' utility within the city of Rasht.

The greatest extreme of utility values congregates in the center of
the city. As previously mentioned, the city center is the location of the
traditional bazaar, and provides the majority of potential opportunities
to make a trip to. The centered zones are featured with high population
density as well as radial pattern of the network, which supports high
connectivity in the street network.

7. Application

Policy makers can take advantage of the influential environmental

Table 2
Results of destination choice models.

Variable Random sampling Stratified importance sampling

Coefficient t-Statistics (p-value) Coefficient t-Statistics (p-value)

Distance – – −0.002 −102.3 (0.0000)
Population density (at destination) 0.006 27.1 (0.0000) 0.003 9.8 (0.0000)
Entropy (at destination) 1.634 19.5 (0.0000) 1.025 11.3 (0.0000)
Job-population balance (at destination) 1.255 27.0 (0.0000) 1.168 21.6 (0.0000)
Link-connectivity factor (at destination) 0.063 5.13 (0.0000) 0.050 3.8 (0.0002)
Loops and lollipops pattern- dummy variable (at destination) −0.172 −7.5 (0.0000) −0.244 −10.8 (0.0000)
Pedestrian catchment area (at destination) 1.934 19.2 (0.0000) 1.323 12.5 (0.0000)
Number of observations 9937 9937
Psuedo-R squared 0.067 0.239

E. Berjisian and M. Habibian Journal of Transport Geography 77 (2019) 39–47

44



variables in terms of improving a walking environment with the cali-
brated pedestrian destination choice model. According to the model
that uses the stratified importance sampling method, while land use
variables (e.g., population density, entropy, and job-population bal-
ance) are influential in choosing walking destinations, a transportation
planner may be more interested in the distance and network con-
nectivity variables (e.g., the PCA as well as the link-connectivity factor).
Therefore, the variables that represent network connectivity can be
subject to transportation policies. The PCA demonstrates the resem-
blance of a network to a well-connected network. A well-connected
network allows pedestrians to walk to every direction, resulting in
network distances to approach Euclidean distances. Another variable,
the link-connectivity factor, represents the link density and the ratio of
minor roads to major roads.

To illustrate the effect of policies that aim to improve the walking
environment with network connectivity, the PCA and the link-

connectivity factor are increased and their consequent effects are in-
vestigated, respectively. Each connectivity network variable is subject
to a distinct scenario. Therefore, Scenario A corresponds to a 5% in-
crease in the PCA and Scenario B refers to a 5% increase in the link-
connectivity factor. Then, the corresponding changes in the destination
choices are calculated by using the stratified importance sampling
model.

By applying each scenario, the model predicts a new distribution of
zones as walking destinations; that is, under each scenario, a pedestrian
may change his/her choice of destination, resulting in some changes in
the TAZs trip attraction. Fig. 6 demonstrates the results of im-
plementing each scenario in contrast to the present condition. There-
fore, the negative sign points to the destinations that lose attraction for
some pedestrians, and on the other extreme; the positive sign indicates
the destinations that attract more pedestrians.

Fig. 6 shows that Scenario A is more influential than Scenario B,
thereby reflecting the stronger effect of PCA than the link-connectivity
factor with respect to the 5% increase in their zonal values. This il-
lustration is confirmed by the results of previous elasticities. As men-
tioned earlier, higher values of PCA correspond to free movement of
pedestrians. Therefore, to encourage people to walk, urban planners
should avoid designs with barriers to pedestrians. Barriers can be in the
form of a road infrastructure, and one should be cautious about its lo-
cation. To that end, urban planners pursuing new approaches such as
pedestrian-oriented development and transit-oriented development
should be aware of the PCA's role. It is worth noting that PCA is not just
relevant to trips completely made on foot but there is also a similar
concept in public transit. That is, PCAs can be measured for public
transit stations. Higher PCA for public transit stations can endow the
city with more sustainable modes of transportation.

Furthermore, Fig. 6 can assist policy makers to prioritize the zones
that deserve more attention with regard to improving the walking en-
vironment. Fig. 6 can help to identify the zones that are most likely to
be improved by increasing either the PCA or the link-connectivity
factor. In other words, these zones are more receptive to walking im-
provement policies, and thus deserve to be investigated by policy ma-
kers. According to Fig. 6, one can observe that the zones located in the
central part of the city are more receptive to walking improvement
policies due to their higher utilities. These zones, which enjoy diversity
of land uses, can be more attractive to pedestrians in the case of

Fig. 4. Explanatory variables' elasticity.

Fig. 5. Normalized utility function values spectrum.
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improving network connectivity variables.
In addition, these scenarios show the seemingly appropriate loca-

tions for implementing policies aimed at improving walking. As per the
results, by enhancing the network connectivity among all zones, a
limited number of zones will attract more walking trips. One can expect
that the walking infrastructures would be more effective in such zones.
Additionally, implementing such scenarios may increase the potential
of mode shift in favor of walking, which can occur due to enhanced
walking utility through the walking environment; however, this effect is
not addressed here.

8. Conclusion

This paper attempts to illustrate the effects of different sampling
methods for choice set generation on pedestrian destination choice
models, which are not adequately addressed in the literature. This study
elaborates on the different methods of sampling for choice set genera-
tion, namely random sampling and stratified importance sampling
methods. These methods are used in order to simplify the burden of
calculations, which arises out of large choice sets with respect to the
destination choice models.

Many travel demand models that incorporate disaggregate choice
models use a sequential structure that destination choice locates on
upper level and mode choice models results affect them in forms of
logsums (i.e., inclusive values) (a recent example can be found (Heilig
et al., 2017)). This modeling structure makes comparison of destination
choice behavior across travel modes difficult as it is assumed that in-
dividuals choose their destination regardless of what mode they use.
Despite the more traditional model structure, in some cases individuals
are more likely to change the destinations based on the mode they use
(Newman and Bernardin, 2010).

Although random sampling is a more common method among pe-
destrian destination choice studies, the results suggest that the stratified
importance sampling method leads to more efficient parameter esti-
mates in terms of the pedestrian destination choice model. The percent
correct of the model that benefits from the stratified importance

sampling method is about twice better than its competitive model that
uses the random sampling method. The model that benefits from the
stratified importance sampling method can predict nearly half of the
pedestrians' destinations correctly.

In addition, this paper takes advantage of a thorough set of built
environment variables that are associated with walking. The sig-
nificance of these variables in predicting pedestrians' destination
choices may give a robust insight to transportation planners and policy
makers looking for methods to encourage walking as a mode of trans-
portation in daily trips. The results reveal that pedestrians tend to walk
to destinations that have a variety of land uses as well as provide them
with more route alternatives through a highly connected network.
However, literature on pedestrian choice behavior is limited and this
topic requires further attention (Clifton et al., 2016b), results of this
study are in agreement with other studies in terms of the influence of
distance, land use diversity and density on walking destination choice.
Although, results of present study reveal that network connectivity can
affect likelihood of destination choice for a pedestrian, other walking
destination choice studies did not investigate such effect. It is re-
commended future studies consider network connectivity variables for
better understanding of walking destination choice behavior.

The relevant elasticities of the explanatory variables indicate that
distance is the most deterring factor to walking, and at the other ex-
treme, diverse land uses at the destination can attract pedestrians. Due
to the higher opportunities provided to pedestrians, they can choose the
diverse land uses at destinations to fulfill various trip purposes.
Additionally, the destinations featured by a highly connected network
are found to attract more walking trips. It is worth noting that since
network connectivity variables are more related to transportation
planning, these variables are more interesting in terms of transportation
policies.

Furthermore, the effects of the application of different scenarios
aiming to improve the walking environment are also explored. The
representative variables of the network connectivity condition in this
study, namely the PCA and the link-connectivity factor, show increased
support for a more pedestrian-oriented environment with two distinct

Fig. 6. Differences in attracted trips subject to Scenario A) increase pedestrian catchment area (PCA), and Scenario B) increase link-connectivity factor.
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scenarios, and the consequent changes in model predictions are in-
vestigated. The results confirm that the PCA can surpass the link-con-
nectivity factor in providing a more favorable walking environment.
Furthermore, a pattern of more favorable walking destinations is
identified in the city's central part, which encompasses more diverse
land uses. Such zones expectedly enjoy higher values of utility function.
Therefore, policy makers can identify the most likely zones in which
implementing walking improvement policies can promise an increase in
walking. Less dependence on private cars due to the mode shift can be a
promising side effect of improving the walking environment through
such policies.

It is noteworthy that this study has taken into account only trips
made solely on foot due to the available data. However, a majority of
urban trips includes some walking known as walking legs of trips (as in
access/egress walks to public transit stations, walking to/from
parking). While a highly connected area can attract pedestrians, it is
also appealing to public transit users who may use walking in the final
leg of their trips. Therefore, a highly connected area, which can be
promised through enhancing the PCA, can also attract public transit
users. However, this issue is open to future research. The more fa-
cilitated walking to/from public transit stations can itself encourage
people to use public transit, and simultaneously lead to less dependence
on private cars, resulting in a beneficial modal shift.
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